在PyTorch中使用Fashion_MNIST的MSELoss函数,可以按照以下步骤进行:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.FashionMNIST(
root='./data',
train=True,
transform=transform,
download=True
)
test_dataset = datasets.FashionMNIST(
root='./data',
train=False,
transform=transform,
download=True
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=64,
shuffle=True
)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=64,
shuffle=False
)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28*28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 28*28)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
num_epochs = 10
for epoch in range(num_epochs):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, batch_idx+1, len(train_loader), loss.item()))
model.eval()
with torch.no_grad():
correct = 0
total = 0
for data, target in test_loader:
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print('Accuracy on the test set: {:.2f}%'.format(100 * correct / total))
这样,你就可以在PyTorch中使用Fashion_MNIST的MSELoss函数进行训练和测试了。
关于Fashion_MNIST的概念、分类、优势、应用场景以及腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体的云计算品牌商,无法提供相关信息。但是Fashion_MNIST是一个常用的图像分类数据集,用于训练和测试机器学习模型。它包含了10个类别的灰度图像,每个图像的大小为28x28像素,可以用于测试图像分类算法的性能。
领取专属 10元无门槛券
手把手带您无忧上云