首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

第二步是把包含类别型数据的 object 列转换为 Category 数据类型,通过指定 dtype 参数实现。 ?...,这是因为 data 目录里还有一个叫 stocks.csv 的文件,如果用 *,会读取出 4 个文件,而不是原文中的 3 个文件。 ? 生成的 DataFrame 索引有重复值,见 “0、1、2”。...注意:如果索引值有重复、不唯一,这种方式会失效。 13. 根据多个类别筛选 DataFrame 预览 movies。 ? 查看 genre(电影类型)列。 ?...把 Series 里的列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两列,第二列包含的是 Python 整数列表。...年龄列有 1 位小数,票价列有 4 位小数,如何将这两列显示的小数位数标准化? 用以下代码让这两列只显示 2 位小数。 ? 第一个参数是要设置的选项名称,第二个参数是 Python 的字符串格式。

7.2K20

Pandas系列 - 基本功能和统计操作

基本功能 列出比较重要的一些方法 编号 属性或方法 描述 1 T/tranpose() 转置行和列 2 axes 返回一个列,行轴标签和列轴标签作为唯一的成员 3 dtypes 返回此对象中的数据类型(...3 mean() 所有值的平均值 4 median() 所有值的中位数 5 mode() 值的模值 6 std() 值的标准偏差 7 min() 所有值中的最小值 8 max() 所有值中的最大值 9...四、汇总数据 describe()函数 :DataFrame列的统计信息 指标 details count 数量 mean 平均值 std 标准差 min 最小值 25% 第一四分位数(Q1),又称“较小四分位数...29.500000 3.790000 75% 35.500000 4.132500 max 51.000000 4.800000 可以看到,默认情况下排除了字符串列,只统计了数字的列...那么,如果想要都包含的话,该怎么操作: object - 汇总字符串列 number - 汇总数字列 all - 将所有列汇总在一起(不应将其作为列表值传递) 包含字符串列 import pandas

70510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas使用技巧:如何将运行内存占用降低90%!

    因为 pandas 表示同一类型的每个值时都使用同样的字节数,而 NumPy ndarray 可以存储值的数量,所以 pandas 可以快速准确地返回一个数值列所消耗的字节数。...object 列中的每个元素实际上都是一个指针,包含了实际值在内存中的位置的「地址」。 下面这幅图给出了以 NumPy 数据类型存储数值数据和使用 Python 内置类型存储字符串数据的方式。...使用 Categoricals 优化 object 类型 pandas 在 0.15 版引入了 Categorials。category 类型在底层使用了整型值来表示一个列中的值,而不是使用原始值。...pandas 使用一个单独的映射词典将这些整型值映射到原始值。只要当一个列包含有限的值的集合时,这种方法就很有用。...这一列没有任何缺失值,但就算有,category 子类型也能处理,只需将其设置为 -1 即可。 最后,让我们看看在将这一列转换为 category 类型前后的内存用量对比。

    3.7K20

    在Python中实现Excel的VLOOKUP、HLOOKUP、XLOOKUP函数功能

    return_array.loc[]返回一个带有基于上述布尔索引的值的pandas系列,只返回True值。...pandas系列的一个优点是它的.empty属性,告诉我们该系列是否包含值或空,如果match_value为空,那么我们知道找不到匹配项,然后我们可以通知用户在数据中找不到查找值。...相反,如果match_value不为空,那么我们知道找到了一些值,此时可以通过.tolist()将match_value(pandas系列)转换为列表。...dataframe.apply(func, axis = 0,args=()) func:我们正在应用的函数 axis:我们可以将该函数应用于行或列。...默认情况下,其值是=0,代表行,而axis=1表示列 args=():这是一个元组,包含要传递到func中的位置参数 下面是如何将xlookup函数应用到数据框架的整个列。

    7.4K11

    没错,这篇文章教你妙用Pandas轻松处理大规模数据

    对象列(object columns)主要用于存储字符串,包含混合数据类型。为了更好地了解怎样减少内存的使用量,让我们看看 Pandas 是如何将数据存储在内存中的。...因为 Pandas 中,相同类型的值会分配到相同的字节数,而 NumPy ndarray 里存储了值的数量,所以 Pandas 可以快速并准确地返回一个数值列占用的字节数。...这两种类型具有相同的存储容量,但如果只存储正数,无符号整数显然能够让我们更高效地存储只包含正值的列。...category 类型在底层使用整数类型来表示该列的值,而不是原始值。Pandas 用一个单独的字典来映射整数值和相应的原始值之间的关系。当某一列包含的数值集有限时,这种设计是很有用的。...在上面的表格中,我们可以看到它只包含了七个唯一的值。我们将使用 .astype() 的方法将其转换为 categorical。 如你所见,除了列的类型已经改变,这些数据看起来完全一样。

    3.7K40

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    这对我们原始dataframe的影响有限,这是由于它只包含很少的整型列。 同理,我们再对浮点型列进行相应处理: 我们可以看到所有的浮点型列都从float64转换为float32,内存用量减少50%。...选用类别(categoricalas)类型优化object类型 Pandas在0.15版本中引入类别类型。category类型在底层使用整型数值来表示该列的值,而不是用原值。...Pandas用一个字典来构建这些整型数据到原数据的映射关系。当一列只包含有限种值时,这种设计是很不错的。...为了介绍我们何处会用到这种类型去减少内存消耗,让我们来看看我们数据中每一个object类型列中的唯一值个数。 可以看到在我们包含了近172000场比赛的数据集中,很多列只包含了少数几个唯一值。...我们先选择其中一个object列,开看看将其转换成类别类型会发生什么。这里我们选用第二列:day_of_week。 我们从上表中可以看到,它只包含了7个唯一值。

    8.8K50

    在Pandas中更改列的数据类型【方法总结】

    例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...理想情况下,希望以动态的方式做到这一点,因为可以有数百个列,明确指定哪些列是哪种类型太麻烦。可以假定每列都包含相同类型的值。...在这种情况下,设置参数: df.apply(pd.to_numeric, errors='ignore') 然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...int64: >>> df = df.infer_objects() >>> df.dtypes a int64 b object dtype: object 由于’b’的值是字符串,而不是整数

    20.5K30

    pandas

    1961/1/8 0:00:00 4.pandas中series与DataFrame区别 Series是带索引的一维数组 Series对象的两个重要属性是:index(索引)和value(数据值)...) 与Series不同的是,DataFrame包括索引index和表头columns:   其中data可以是很多类型: 包含列表、字典或者Series的字典 二维数组 一个Series对象 另一个DataFrame...,periods=6), "age":np.arange(6)}) print(df) df["date"] = df["date"].dt.date #将date列中的日期转换为没有时分秒的日期..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame...通常情况下, 因为.T的简便性, 更常使用.T属性来进行转置 注意 转置不会影响原来的数据,所以如果想保存转置后的数据,请将值赋给一个变量再保存。

    16910

    Pandas 25 式

    用这种方式转换第三列会出错,因为这列里包含一个代表 0 的下划线,pandas 无法自动判断这个下划线。...,这是因为 data 目录里还有一个叫 stocks.csv 的文件,如果用 *,会读取出 4 个文件,而不是原文中的 3 个文件。 ? 生成的 DataFrame 索引有重复值,见 “0、1、2”。...注意:如果索引值有重复、不唯一,这种方式会失效。 13. 根据多个类别筛选 DataFrame 预览 movies。 ? 查看 genre(电影类型)列。 ?...把 Series 里的列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两列,第二列包含的是 Python 整数列表。...年龄列有 1 位小数,票价列有 4 位小数,如何将这两列显示的小数位数标准化? 用以下代码让这两列只显示 2 位小数。 ? 第一个参数是要设置的选项名称,第二个参数是 Python 的字符串格式。

    8.5K00

    教程 | 简单实用的pandas技巧:如何将内存占用降低90%

    因为 pandas 表示同一类型的每个值时都使用同样的字节数,而 NumPy ndarray 可以存储值的数量,所以 pandas 可以快速准确地返回一个数值列所消耗的字节数。...object 列中的每个元素实际上都是一个指针,包含了实际值在内存中的位置的「地址」。 下面这幅图给出了以 NumPy 数据类型存储数值数据和使用 Python 内置类型存储字符串数据的方式。 ?...使用 Categoricals 优化 object 类型 pandas 在 0.15 版引入了 Categorials。category 类型在底层使用了整型值来表示一个列中的值,而不是使用原始值。...pandas 使用一个单独的映射词典将这些整型值映射到原始值。只要当一个列包含有限的值的集合时,这种方法就很有用。...这一列没有任何缺失值,但就算有,category 子类型也能处理,只需将其设置为 -1 即可。 最后,让我们看看在将这一列转换为 category 类型前后的内存用量对比。

    3.9K100

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    尽管read_excel方法包含数百万个参数,但我们只讨论那些在日常操作中最常见的那些。 我们使用Iris样本数据集,出于教育目的,该数据集可在线免费使用。...默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ? 3、查看所有列的名字 ? 4、查看信息 查看DataFrame的数据属性总结: ? 5、返回到DataFrame ?...11、在Excel中复制自定义的筛选器 ? 12、合并两个过滤器的计算结果 ? 13、包含Excel中的功能 ? 14、从DataFrame获取特定的值 ?...以上,我们使用的方法包括: Sum_Total:计算列的总和 T_Sum:将系列输出转换为DataFrame并进行转置 Re-index:添加缺少的列 Row_Total:将T_Sum附加到现有的DataFrame...可以使用dictionary函数进行单独计算,也可以多次计算值: ? 七、Vlookup函数 Excel中的vlookup是一个神奇的功能,是每个人在学习如何求和之前就想要学习的。

    8.4K30

    删除重复值,不只Excel,Python pandas更行

    此方法包含以下参数: subset:引用列标题,如果只考虑特定列以查找重复值,则使用此方法,默认为所有列。 keep:保留哪些重复值。’...图3 在上面的代码中,我们选择不传递任何参数,这意味着我们检查所有列是否存在重复项。唯一完全重复的记录是记录#5,它被丢弃了。因此,保留了第一个重复的值。...数据框架是一个表或工作表,而pandas Series是该表/表中的一列。换句话说,数据框架由各种系列组成。...图7 Python集 获取唯一值的另一种方法是使用Python中的数据结构set,集(set)基本上是一组唯一项的集合。由于集只包含唯一项,如果我们将重复项传递到集中,这些重复项将自动删除。...我们的列(或pandas Series)包含两个重复值,”Mary Jane”和”Jean Grey”。通过将该列转换为一个集,我们可以有效地删除重复项!

    6.1K30

    PySpark UD(A)F 的高效使用

    举个例子,假设有一个DataFrame df,它包含10亿行,带有一个布尔值is_sold列,想要过滤带有sold产品的行。...利用to_json函数将所有具有复杂数据类型的列转换为JSON字符串。因为Arrow可以轻松处理字符串,所以可以使用pandas_udf装饰器。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...不同之处在于,对于实际的UDF,需要知道要将哪些列转换为复杂类型,因为希望避免探测每个包含字符串的列。在向JSON的转换中,如前所述添加root节点。...带有这种装饰器的函数接受cols_in和cols_out参数,这些参数指定哪些列需要转换为JSON,哪些列需要转换为JSON。只有在传递了这些信息之后,才能得到定义的实际UDF。

    19.7K31

    如何将Pandas数据转换为Excel文件

    通过使用Pandas库,可以用Python代码将你的网络搜刮或其他收集的数据导出到Excel文件中,而且步骤非常简单。...将Pandas DataFrame转换为Excel的步骤 按照下面的步骤来学习如何将Pandas数据框架写入Excel文件。...第一步:安装pandas和openpyxl 由于你需要导出pandas数据框架,显然你必须已经安装了pandas包。如果没有,请运行下面的pip命令,在你的电脑上安装Pandas python包。...第2步:制作一个DataFrame 在你的python代码/脚本文件中导入Pandas包。 创建一个你希望输出的数据的数据框架,并用行和列的值来初始化数据框架。 Python代码。...import pandas as pd # creating pandas dataframe from dictionary of data df_cars = pd.DataFrame({'Company

    7.6K10
    领券