首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何获得Google Cloud Vision API徽标检测的置信度得分?

要获得Google Cloud Vision API徽标检测的置信度得分,您可以按照以下步骤进行操作:

  1. 首先,您需要在Google Cloud平台上创建一个项目并启用Cloud Vision API。您可以访问Google Cloud控制台(https://console.cloud.google.com)并按照指示创建项目。
  2. 在项目中启用Cloud Vision API后,您需要创建一个服务账号密钥。在Google Cloud控制台的“API和服务”部分,选择“凭据”选项卡,然后创建一个新的服务账号密钥。选择适当的角色和密钥类型,并下载生成的JSON密钥文件。
  3. 在您的应用程序中,使用适当的编程语言和Google Cloud Vision API的客户端库,加载您的服务账号密钥文件,并进行身份验证。
  4. 通过调用Vision API的annotateImage方法,将您要检测徽标的图像作为输入。确保在features参数中设置LOGO_DETECTION以启用徽标检测功能。
  5. 调用annotateImage方法后,您将获得一个AnnotateImageResponse对象作为响应。在这个响应对象中,您可以访问logoAnnotations字段,它包含了检测到的徽标的相关信息。
  6. 对于每个检测到的徽标,您可以访问score字段来获取置信度得分。该得分表示徽标检测的置信度,范围从0到1,越接近1表示置信度越高。

总结起来,要获得Google Cloud Vision API徽标检测的置信度得分,您需要创建一个项目并启用Cloud Vision API,创建一个服务账号密钥,加载密钥文件并进行身份验证,调用annotateImage方法并设置LOGO_DETECTION特性,然后访问响应中的logoAnnotations字段以及每个徽标的score字段来获取置信度得分。

请注意,由于要求不能提及亚马逊AWS、Azure、阿里云、华为云、天翼云、GoDaddy、Namecheap、Google等流行的云计算品牌商,因此无法提供腾讯云相关产品和产品介绍链接地址。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 目标检测算法中检测框合并策略技术综述

    物体检测(Object Detection)的任务是找出图像或视频中的感兴趣目标,同时实现输出检测目标的位置和类别,是机器视觉领域的核心问题之一,学术界已有将近二十年的研究历史。随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,以及Mask R-CNN、RefineDet、RFBNet等(图 1,完整论文列表参见[1])。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向移动端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。

    04

    目标检测算法中检测框合并策略技术综述

    物体检测(Object Detection)的任务是找出图像或视频中的感兴趣目标,同时实现输出检测目标的位置和类别,是机器视觉领域的核心问题之一,学术界已有将近二十年的研究历史。随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,以及Mask R-CNN、RefineDet、RFBNet等(图 1,完整论文列表参见[1])。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向移动端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。

    03

    广告行业中那些趣事系列26:基于PoseNet算法的人体姿势相似度识别

    摘要:本篇从理论到实践分享了基于PoseNet算法的人体姿势相似度识别项目。首先介绍了项目背景,因为部门搞活动需要大家去模仿夸张搞笑的表情和姿势来提升活动的可玩性,所以需要利用CV算法对图片进行相似度打分;然后详细讲解了人体姿势相似度识别算法,主要包括基于PoseNet算法来识别姿势和计算姿势相似度两个流程;最后基于已有的开源项目进行二次开发实现了人体姿势相似度识别项目。对于以前从未接触过CV项目的我来说既是挑战也是契机。因为之前主要做NLP相关的项目,而实际业务场景中经常会有NLP和CV交叉相关的项目,所以就需要对CV也有一定的了解。通过这个项目相当于慢慢入了CV的门,最终的目标是不变的,将更多更好的机器学习算法落地到实际业务产生更多的价值。

    03

    【翻译】DoesWilliam Shakespeare REALLY Write Hamlet? Knowledge Representation Learning with Confidence

    知识图谱能够提供重要的关系信息,在各种任务中得到了广泛的应用。然而,在KGs中可能存在大量的噪声和冲突,特别是在人工监督较少的自动构造的KGs中。为了解决这一问题,我们提出了一个新的置信度感知(confidence-aware)知识表示学习框架(CKRL),该框架在识别KGs中可能存在的噪声的同时进行有置信度的知识表示学习。具体地说,我们在传统的基于翻译的知识表示学习方法中引入了三元组置信度。为了使三次置信度更加灵活和通用,我们只利用KGs中的内部结构信息,提出了同时考虑局部三次和全局路径信息的三次置信度。在知识图噪声检测、知识图补全和三重分类等方面对模型进行了评价。实验结果表明,我们的置信度感知模型在所有任务上都取得了显著和一致的改进,这证实了我们的CKRL模型在噪声检测和知识表示学习方面的能力。

    01

    Linked In微服务异常告警关联中的尖峰检测

    LinkedIn 的技术栈由数千个不同的微服务以及它们之间相关联的复杂依赖项组成。当由于服务行为不当而导致生产中断时,找到造成中断的确切服务既具有挑战性又耗时。尽管每个服务在分布式基础架构中配置了多个警报,但在中断期间找到问题的真正根本原因就像大海捞针,即使使用了所有正确的仪器。这是因为客户端请求的关键路径中的每个服务都可能有多个活动警报。缺乏从这些不连贯的警报中获取有意义信息的适当机制通常会导致错误升级,从而导致问题解决时间增加。最重要的是,想象一下在半夜被 NOC 工程师吵醒,他们认为站点中断是由您的服务引起的,结果却意识到这是一次虚假升级,并非由您的服务引起。

    01

    Scalable Object Detection using Deep Neural Networks

    深度卷积神经网络最近在一系列图像识别基准测试中取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测一个边界框和图像中每个目标类别的置信度得分。这样的模型捕获目标周围的整个图像上下文,但是如果不天真地复制每个实例的输出数量,就不能处理图像中相同目标的多个实例。在这项工作中,我们提出了一个显著性激发的神经网络模型用于检测,它预测了一组与类无关的边界框,以及每个框的一个得分,对应于它包含任何感兴趣的目标的可能性。模型自然地为每个类处理可变数量的实例,并允许在网络的最高级别进行跨类泛化。我们能够在VOC2007和ILSVRC2012上获得具有竞争力的识别性能,同时只使用每张图像中预测的前几个位置和少量的神经网络评估。

    02
    领券