1.2 连接至数据库 import pymssql conn = pymssql.connect(server="xxx.xxx.xxx.xxx",user="xxx",password="xxx",database...="xxx") 这里,server为数据库服务器名称或IP,user为用户名,password为密码,database为数据库名称。...2 pandas读写数据库 在python连接好数据库后,pandas可以利用read_sql()方法将数据读入DataFrame。这里可以看一下代码。...head> {% for table in tables %} {{ table|safe }} {% endfor %} 现在加入数据库...pandas 如何直接转化成html. pandas中有方法to_html 如下的例子是将excel的数据,转化成html #!
LongVILA有效地将VILA的视频帧数从8扩展到1024,从2.00提高到3.26(满分5分),在1400帧(274k上下文长度)的视频中实现了99.5%的准确率,这在长视频领域的针刺麦田搜索任务中具有重要意义...长序列训练示例通常超出了单个设备的内存容量。为解决这个问题,序列并行主义已于文本LLM社区中广泛采用,将单个序列分布到多个设备上。...遵循 (Fang和Zhao,2024;Gu等,2024),作者将系统扩展到多模态场景,以适应复杂的注意力 Mask 和变量长输入序列。作者的工作是首次设计和实现了一个序列并行系统为视觉语言模型。...纯数据并行主义在较大的集群大小上无法扩展到长视频。深蓝-Ulysses是根据注意力头进行分区的,这限制了其扩展到更高上下文长度的能力,因为8B模型只有32个注意力头。...5.1.3 Effect of two-stage sharding 图10:在长视频 haystack 实验中的针与麦田比较。左图的32帧 Baseline 模型在32帧后无法检索到正确的针。
Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。...我们通过将fare拖放到x下来创建fare的直方图。 除了这些,还可以创建箱线图、3d 散点图、线图等。...如果您想快速概览数据,从检查汇总统计数据到绘制数据,PandasGUI 是一个很好的工具,可以轻松完成,无需代码。
2 data = pd.read_csv(PATH + FILE_NAME, encoding="gbk", header=0, index_col=0) 直接读入就可以了 发布者:全栈程序员栈长,
该数据集以Pandas数据帧的形式加载。...print(storewide.index) 除了每周商店销售额外,还可以对其他任何列进行同样的长格式到宽格式的转换。 Darts Darts 库是如何处理长表和宽表数据集的?...Gluonts数据集是Python字典格式的时间序列列表。可以将长式Pandas数据框转换为Gluonts。...将图(3)中的宽格式商店销售额转换一下。数据帧中的每一列都是带有时间索引的 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。...# 将 gluonts 数据集转换为 pandas 数据帧 # Either long-form or wide-form the_gluonts_data = data_wide_gluonts #
标签:pandas,melt()方法 有时,我们可能需要将pandas数据框架从宽(wide)格式转换为长(long)格式,这可以通过使用melt方法轻松完成。...图1 考虑以下示例数据集:一个表,其中包含4个国家前6个月的销售数据。然后,我们的目标是将“宽”格式转换为“长”格式,如上图1所示。...import pandas as pd import numpy as np np.random.seed(0) sales = pd.DataFrame({ 'country':['Canada','...将pandas数据框架从宽格式转换为长格式 使用“country”列作为标识符变量id_vars。在第一行代码中,将value_vars留空,实际上是在说:使用除“country”之外的所有列。...但是,注意到列标题中的一个小问题——“variable”和“value”列的描述性不强。我们想把它们分别改为“Month”和“Sales”。 可以使用df.rename()方法来实现。
将数据导出到Excel文件通常是任何用户阅读和解释一组数据的最优先和最方便的方式。...将Pandas DataFrame转换为Excel的步骤 按照下面的步骤来学习如何将Pandas数据框架写入Excel文件。...第一步:安装pandas和openpyxl 由于你需要导出pandas数据框架,显然你必须已经安装了pandas包。如果没有,请运行下面的pip命令,在你的电脑上安装Pandas python包。...第2步:制作一个DataFrame 在你的python代码/脚本文件中导入Pandas包。 创建一个你希望输出的数据的数据框架,并用行和列的值来初始化数据框架。 Python代码。...提示 你不仅仅局限于控制excel文件的名称,而是将python数据框架导出到Excel文件中,而且在pandas包中还有很多可供定制的功能。
Python中将列表转换成为数据框有两种情况:第一种是两个不同列表转换成一个数据框,第二种是一个包含不同子列表的列表转换成为数据框。...第一种:两个不同列表转换成为数据框 from pandas.core.frame import DataFrame a=[1,2,3,4]#列表a b=[5,6,7,8]#列表b c={"a" : a,..."b" : b}#将列表a,b转换成字典 data=DataFrame(c)#将字典转换成为数据框 print(data) 输出的结果为 a b 0 1 5 1 2 6 2 3 7 3...4 8 第二种:将包含不同子列表的列表转换为数据框 from pandas.core.frame import DataFrame a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表...将列表(List)转换为数据框(Dataframe)的文章就介绍到这了,更多相关Pandas 列表转换为数据框内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn
对于 ES 来说,必须先存储有数据然后才能搜索到这些数据,而在实际业务中 ES 的数据也常常是与 mysql 保持同步的,所以这里插入这篇文章简单介绍几种同步 mysql 数据到 ES 的方式。...当然某些情况下,系统中会设计一个数据代理层,专门集中负责有关数据的操作,这时 ES 的数据同步也会自然放到这层,但是仍然将其视为一类好了。...二、独立同步: 区别于上一种,这种方式将 ES 同步数据部分分离出来单独维护,此时业务层只负责查询即可。 ?...如上图所示,这种方式会等到数据写入 DB 完成后,直接从 DB 中同步数据到 ES ,具体的操作又可以细分为两类: 1、插件式: 直接利用第三方插件进行数据同步,缺点是灵活度受插件限制。...如上图所示,通过指定具体哪个库哪些表的增删改操作进行订阅,返回结果就会过滤掉不相干的数据,并且所有返回结果都包含以下四个维度的数据:具体哪个数据库、具体哪张表、进行了增删改哪种操作,操作的数据又是什么。
重塑 DataFrame 是数据科学中一项重要且必不可少的技能。在本文中,我们将探讨 Pandas Melt() 以及如何使用它进行数据处理。...例如, id_vars = 'Country' 会告诉 pandas 将 Country 保留为一列,并将所有其他列转换为行。..._deaths_global.csv') recovered_df = pd .read_csv('time_series_covid19_recovered_global.csv') 将它们从宽格式改造成长格式...从当前的宽格式逆透视为长格式。...的melt() 方法将 DataFrame 从宽格式重塑为长格式。
先来了解Pandas封装的顶层函数部分,其一:melt()函数,它位于Pandas包的最顶层,结构如下: Pandas | melt() melt()函数的原型如下: ?...前者为通常意义的*args, 后者为 **kwargs. frame不难猜测为Pandas的二维数组结构DataFrame,其他参数含义通过如下几个例子观察。 构造df 结构如下: ?...这里面引出2个概念: 宽表( wide format) :指列数比较多 长表( long format) :行数比较多 回头核对官方给定melt的功能和参数 ?...注意用词:unpivot 变化 DataFrame从宽格式到长格式,选择性地保留标示列,其实就是指 id_vars参数。 ?...思考 melt()函数的作用,它能将宽表变化为长表。在做特征分析列数较多,即为宽表时,我们不妨选择某些列为unpivot列,从而降低维度,增加行数据实现对数据的重构。
标签:pandas,pivot()方法 在《pandas基础:数据显示格式转换》中,我们使用melt()方法将数据框架从宽(wide)格式转换为长(long)格式。...然而,如果要将数据框架从长格式转换为宽格式呢?如下图1所示。 图1 可以使用pandas的pivot()方法。下面通过一个简单的示例演示如何使用它。...基本上,将country列放在“行”中,将Month放在“列”中,然后将Sales作为“价值”放入表中。这里的好消息是,pandas中也有一个pivot函数。...下面的代码将创建一个“长”表单数据框架,看起来像上图1中左侧的表。...用于新数据框架列填充的值,相当于Excel数据透视表的“值”。 现在来实现数据格式的转换。注意,下面两行代码将返回相同的结果。然而,首选第二行代码,因为它更明确地说明了参数的用途。
然而,适用于短视频的现有方法通常无法用于长视频(≥ 64 帧)。 即使是生成短序列,通常也需要成本高昂的训练,比如训练步数超过 260K,批大小超过 4500。...如果不在更长的视频上进行训练,通过短视频生成器来制作长视频,得到的长视频通常质量不佳。而现有的自回归方法(通过使用短视频后几帧生成新的短视频,进而合成长视频)也存在场景切换不一致等一些问题。...外观保留模块 APM 模块可通过使用固定锚帧中的信息来将长期记忆整合进视频生成过程中。这有助于维持视频块生成过程中的场景和对象特征。...为了让 APM 能平衡处理锚帧和文本指令给出的引导信息,该团队做出了两点改进:(1)将锚帧的 CLIP 图像 token 与文本指令的 CLIP 文本 token 混合起来;(2)为每个交叉注意力层引入了一个权重来使用交叉注意力...、SEINE,视频到视频方法 SparseControl,文本到长视频方法 FreeNoise。
超简单Python将指定数据插入到docx模板渲染并生成 最近有一个需求,制作劳动合同表,要从excel表格中将每个人的数据导入到docx劳动合同中,重复量很大,因此可以使用python高效解决。...为了让模板内容不变动,这里使用了类似jinja2的渲染引擎,使用{{ }}插值表达式把数据插入进去。也可以使用{% %}循环,条件语法等。
正常的图片储存要么放进本地磁盘,要么就存进数据库。存入本地很简单,现在我在这里记下如何将图片存进mysql数据库 如果要图片存进数据库 要将图片转化成二进制。...1.数据库存储图片的字段类型要为blob二进制大对象类型 2.将图片流转化为二进制 下面放上代码实例 一、数据库 CREATE TABLE `photo` ( `id` int(11) NOT NULL...java.sql.PreparedStatement; import java.sql.ResultSet; import java.sql.SQLException; /** * @author Administrator 测试写入数据库以及从数据库中读取...*/ public class ImageDemo { // 将图片插入数据库 public static void readImage2DB() {...void main(String[] args) { //readImage2DB(); readDB2Image(); } } 发布者:全栈程序员栈长,
每次给运营导数据的时候,如果不用工具的话,就是直接生成.csv格式的文件,这样的文件不支持'sheet',每次还有手工进行,相当的不科学,今天试试Python生成excel文件。 ...改进版本:数据库内容到EXCEL #!
在本文中,我们将探讨如何使用Pandas库轻松读取和操作Excel文件。 Pandas简介 Pandas是一个用于数据处理和分析的强大Python库。...filtered_data) 写入Excel文件 不仅可以读取数据,Pandas也能够轻松将数据写入Excel文件。...使用to_excel方法,我们可以将DataFrame中的数据写入到新的Excel文件中: df.to_excel('output.xlsx', index=False) 实例:读取并写入新表格 下面是一个示例代码...最后,使用to_excel将新数据写入到文件中。 数据清洗与转换 在实际工作中,Excel文件中的数据可能存在一些杂乱或不规范的情况。...通过解决实际问题,你将更好地理解和运用Pandas的强大功能。 结语 Pandas是Python中数据处理领域的一颗明星,它简化了从Excel中读取数据到进行复杂数据操作的过程。
本教程将详细介绍Pandas的各个方面,包括基本的数据结构、数据操作、数据过滤和排序、数据聚合与分组,以及常见的数据分析任务。 什么是Pandas?...可以通过使用pip命令来进行安装: pip install pandas 安装完成后,我们可以通过以下方式将Pandas导入到Python代码中: import pandas as pd 数据结构 Pandas...Pandas可以从各种数据源中读取数据,包括CSV文件、Excel文件、数据库等。...同时,也可以将数据写入到这些数据源中。...USA 1 Mary 30 Canada 2 Mark 35 UK 将数据写入CSV和Excel文件(案例5:写入CSV和Excel文件) import pandas
一、" 解封装 - 解码 - 播放 过程 " 涉及到的函数和结构体概述 1、打开媒体文件 在上一篇博客 【FFmpeg】FFmpeg 播放器框架 ① ( “ 解封装 - 解码 - 播放 过程 “ 涉及到的函数和结构体...完整的画面帧 , 每个画面帧都是 ARGB 像素格式的画面 ; 音频数据需要解码成 PCM 数据 , 才能被扬声器播放出来 ; 注意 : 解码后的 音视频 比 压缩状态下 的 音视频 大 10 ~ 100...倍不等 ; 4、音视频解码 - 将压缩数据 AVPacket 解码为 AVFrame 音频帧和视频帧 解复用操作后会得到 音频包队列 和 视频包队列 , 都是 AVPacket 队列 , 其中的 压缩数据...帧数据 ; 5、音视频播放 - 播放 AVFrame 数据 解码器将 AVPacket 数据进行解码后得到 AVFrame 数据 , 其中 音频包队列 解码后得到 采样帧队列 视频包队列 解码后得到...图像帧队列 采样帧队列 和 图像帧队列 中的元素都是 AVFrame 结构体对象 ; 将 采样帧队列 和 图像帧队列 进行音视频同步校准操作 , 然后 采样帧送入 扬声器 , 图像帧送入 显示器 , 就可以完成音视频数据的播放操作
所以,今天就以此为题展开拓展分析,再输出一点Pandas干货…… ? 问题描述:一个pandas dataframe数据结构存在一列是集合类型(即包含多个子元素),需要将每个子元素展开为一行。...stack原义为堆栈的意思,放到pandas中就是将元素堆叠起来——从宽表向长表转换。...看下stack的官方注释,是说将一个DataFram转换为多层索引的Series,其中原来的columns变为第二层索引。 ?...ok,那么可以预见的是在刚才获得的多列DataFrame基础上执行stack,将实现列转行堆叠的效果并得到一个Series。具体来说,结果如下: ?...至此,已经基本实现了预定的功能,剩下的就只需将双层索引复位到数据列即可。当然,这里复位之后会增加两列数据,除了原本需要的一列外另一列是多余的,仅需将其drop掉即可,当然还需完成列名的变更。
领取专属 10元无门槛券
手把手带您无忧上云