首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据仓库介绍与实时数仓案例

2.数据仓库的发展 数据仓库有两个环节:数据仓库的构建与数据仓库的应用。...( 2)参考后面的案例 另外,随着数据多样性的发展,数据仓库这种提前规定schema的模式显得越来难以支持灵活的探索&分析需求,这时候便出现了一种数据湖技术,即把原始数据全部缓存到某个大数据存储上,后续分析时再根据需求去解析原始数据...5.实时数仓案例 菜鸟仓配实时数据仓库案例参考自菜鸟仓配团队的分享,涉及全局设计、数据模型、数据保障等几个方面。...开源提供类似功能的有,Elastic Search、Kylin、Druid等; 2.案例中选择把数据写入到Hbase供KV查询,也可根据情况选择其他引擎,比如数据量不多,查询压力也不大的话,可以用mysql...实时数仓与离线数仓的对比 在看过前面的叙述与菜鸟案例之后,我们看一下实时数仓与离线数仓在几方面的对比: 首先,从架构上,实时数仓与离线数仓有比较明显的区别,实时数仓以Kappa架构为主,而离线数仓以传统大数据架构为主

2.8K41
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据仓库介绍与实时数仓案例

    数据仓库的趋势: 实时数据仓库以满足实时化&自动化决策需求; 大数据&数据湖以支持大量&复杂数据类型(文本、图像、视频、音频); 2.数据仓库的发展 数据仓库有两个环节:数据仓库的构建与数据仓库的应用...(2)参考后面的案例 另外,随着数据多样性的发展,数据仓库这种提前规定schema的模式显得越来难以支持灵活的探索&分析需求,这时候便出现了一种数据湖技术,即把原始数据全部缓存到某个大数据存储上,后续分析时再根据需求去解析原始数据...(3) 5.实时数仓案例 菜鸟仓配实时数据仓库案例参考自菜鸟仓配团队的分享,涉及全局设计、数据模型、数据保障等几个方面。 注:特别感谢缘桥同学的无私分享。...开源提供类似功能的有,Elastic Search、Kylin、Druid等; 2.案例中选择把数据写入到Hbase供KV查询,也可根据情况选择其他引擎,比如数据量不多,查询压力也不大的话,可以用mysql...实时数仓与离线数仓的对比 在看过前面的叙述与菜鸟案例之后,我们看一下实时数仓与离线数仓在几方面的对比: 首先,从架构上,实时数仓与离线数仓有比较明显的区别,实时数仓以Kappa架构为主,而离线数仓以传统大数据架构为主

    1.2K30

    【实践案例分享】58全站用户行为数据仓库建设及实践

    为什么需要数据建模 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合。数据仓库中的数据需要进行有序、有结构地分类组织和存储。...全站行为数据仓库落地建设实践过程中,参考互联网行业内采用广泛的维度建模方法论,结合58商业自身特点,分析业务环境构造数据仓库底层数据基础,再按照实际的应用需求构造数据仓库上层数据的方式进行数据仓库的建设...全站行为数据仓库建设实践 下图为数据仓库中全站行为数据部分数据仓库体系架构图: _ _ ? _ _ 图1 全站行为数据架构图 1....全站行为数据仓库构建原则 全站行为数据仓库建设中,逐步借鉴和沉淀的数据仓库构建原则如下: (1) 底层业务的数据驱动为导向同时结合业务需求驱动。 (2) 便于数据分析。...数据仓库架构分层思想 数据仓库构建过程中,采用的分层思想,各层的功能及建模方式和原则介绍如下。

    1.3K20

    数据仓库①:数据仓库概述

    ~这就是关于数据仓库最贴切的定义了。事实上数据仓库不应让传统关系数据库来实现,因为关系数据库最少也要求满足第1范式,而数据仓库里的关系表可以不满足第1范式。...有了这些数据快照以后,用户便可将其汇总,生成各历史阶段的数据分析报告; 数据仓库组件 数据仓库的核心组件有四个:各源数据库,ETL,数据仓库,前端应用。如下图所示: ? 1....前端应用 和操作型数据库一样,数据仓库通常提供具有直接访问数据仓库功能的前端应用,这些应用也被称为BI(商务智能)应用; 数据集市(data mart) 数据集市可以理解为是一种"小型数据仓库",它只包含单个主题...当用户或者应用程序不需要/不必要不允许用到整个数据仓库的数据时,非独立数据集市就可以简单为用户提供一个数据仓库的"子集"。...数据仓库开发流程 在数据库系列的第五篇 中,曾详细分析了数据库系统的开发流程。数据仓库的开发流程和数据库的比较相似,因此本文仅就其中区别进行分析。 下图为数据仓库的开发流程: ?

    2.9K71

    案例】恒丰银行——基于大数据技术的数据仓库应用建设

    本篇案例为数据猿推出的大型“金融大数据主题策划”活动(查看详情)第一部分的系列案例/征文;感谢 恒丰银行 的投递 作为整体活动的第二部分,2017年6月29日,由数据猿主办,互联网普惠金融研究院合办...首席数据官联盟协办的《「数据猿·超声波」之金融科技·商业价值探索高峰论坛》还将在上海隆重举办【论坛详情】【上届回顾(点击阅读原文查看)】 在论坛现场,也将颁发“技术创新奖”、“应用创新奖”、“最佳实践奖”、“优秀案例奖...”四大类案例奖 来源:数据猿丨投递:恒丰银行 本文长度为9800字,建议阅读20分钟 随着利率市场化进程加快、互联网金融业态的发展,传统银行与实体经济的业务横向联系与深度融合进展迅速,...恒丰银行致力于打造一个学习型组织,加强包括行内员工和合作开发公司员工的技术培训,对大数据应用开发的难点编写培训教程和制定开发规范,建立微信学习群,不定期的分享开发经验和剖析不良的实现案例,做好了分层知识传导...(1)数据移植流程 利用Sqoop技术连接原数据仓库抽取数据到hdfs文件系统; 将原数据仓库的数据抽取到hdfs文件系统后,在大数据平台中构建映射在这些数据文件上的外表,其表结构与原数据仓库表结构一致

    3.4K50

    数据仓库】现代数据仓库坏了吗?

    数据仓库是现代数据堆栈的基础,所以当我们看到 Convoy 数据负责人 Chad Sanderson 在 LinkedIn 上宣称“数据仓库坏了”时,它引起了我们的注意。...我会让您自己决定“不可变数据仓库”(或主动与被动 ETL)是否适合您的数据团队。...不可变数据仓库如何结合规模和可用性 乍得桑德森的观点 现代数据堆栈有许多排列,但数据仓库是一个基础组件。...另一种方法:引入不可变数据仓库 不可变数据仓库概念(也称为活动 ETL)认为,仓库应该是通过数据来表示现实世界,而不是乱七八糟的随机查询、损坏的管道和重复信息。...不可变数据仓库也面临挑战。以下是一些可能的解决方案。 我并不认为不可变数据仓库是灵丹妙药。与任何方法一样,它也有其优点和缺点,而且肯定不是每个组织都适用。

    1.7K20

    数据仓库

    *了解数据仓库相关技术 *了解数据仓库设计过程建造,运行及维护 *了解OLAP及多维数据模型 决策支持系统及其演化 一般将数据分为:分析型数据与操作型数据 操作型数据:由企业的基本业务系统产生的数据...数据仓库的特性:面向主题性,集成性,不可更新和时间性。 集成:数据仓库最重要的特性,分为数据抽取转换,清理(过滤)和装载 不可更新:数据仓库中的数据以批量方式处理,不进行一般主义上的数据更新。...数据仓库的体系结构与环境 从数据层次角度的体系结构来看,典型的数据仓库的数据体系结构包括:操作型数据、操作型 数据存储、数据仓库、数据集市和个体层数据 从功能结构看,可分为数据处理、数据管理和数据应用三个层次...数据仓库的数据组织 数据仓库的数据单位中保存数据的细化程度或综合程度的级别。...细化程度越高,粒度越小 粒度影响到数据仓库的数据量及系统能回答的查询的类型 进行数据仓库的数据组织时,应根据当前应用的需求进行多粒度级设计。满足多角度,多层次数据查询要求。

    1.8K40

    数据仓库②-数据仓库与数据集市建模

    前言 数据仓库建模包含了几种数据建模技术,除了之前在数据库系列中介绍过的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。...本文将详细介绍数据仓库维度建模技术,并重点讨论三种基于ER建模/关系建模/维度建模的数据仓库总体建模体系:规范化数据仓库,维度建模数据仓库,以及独立数据集市。...数据仓库建模体系之规范化数据仓库 所谓"数据仓库建模体系",指的是数据仓库从无到有的一整套建模方法。最常见的三种数据仓库建模体系分别为:规范化数据仓库,维度建模数据仓库,独立数据集市。...很多书将它们称为"数据仓库建模方法",但笔者认为数据仓库建模体系更能准确表达意思,请允许我自作主张一次吧:)。下面首先来介绍规范化数据仓库。...数据仓库建模体系之维度建模数据仓库 非维度建模数据仓库(dimensionally modeled data warehouse)是一种使用交错维度进行建模的数据仓库,其总体架构如下图所示: ?

    5.3K72

    数据仓库入门

    什么是数据仓库(Data Warehouse,DW)?...1991 年,数据仓库之父 Bill Inmon 在《Building the Data Warehouse》一书中,给出的定义: “数据仓库一个面向主题的、集成的、稳定的、随时间变化的数据的集合,以用于支持管理决策过程...建立数据仓库的目的是帮助企业高层系统地组织、理解和使用数据,以便进行战略决策。 数据仓库系统的体系结构 源数据层 源数据是数据仓库系统的基础,是整个系统的数据源泉。...数据存储与管理层 元数据 元数据是关于数据的数据,位于数据仓库的上层,用以描述数据仓库内数据的结构、位置和 建立方法。通过元数据进行数据仓库的管理和使用。...数据仓库 数据仓库中存放了企业的整体信息,而数据集市只存放了某个主题需要的的信息,其目的是 减少数据处理量。

    1.9K20

    数据仓库架构

    针对性强,主要应用于数据仓库构建和OLAP引擎低层数据模型。...总线架构 多维体系结构(总线架构) 数据仓库领域里,有一种构建数据仓库的架构,叫Multidimensional Architecture(MD),中文一般翻译为“多维体系结构”,也称为“总线架构”(Bus...前台还包括像查询管理、活动监控等为了提供数据仓库的性能和质量的服务。...一致性维度 在多维体系结构中,没有物理上的数据仓库,由物理上的数据集市组合成逻辑上的数据仓库。而且数据集市的建立是可以逐步完成的,最终组合在一起,成为一个数据仓库。...虽然在物理上是独立的,但在逻辑上由一致性维度使所有的数据集市是联系在一起,随时可以进行交叉探察等操作,也就组成了数据仓库

    1.9K20

    数据仓库技术」怎么选择现代数据仓库

    构建自己的数据仓库时要考虑的基本因素 ? 我们用过很多数据仓库。当我们的客户问我们,对于他们成长中的公司来说,最好的数据仓库是什么时,我们会根据他们的具体需求来考虑答案。...通常,他们需要几乎实时的数据,价格低廉,不需要维护数据仓库基础设施。在这种情况下,我们建议他们使用现代的数据仓库,如Redshift, BigQuery,或Snowflake。...大多数现代数据仓库解决方案都设计为使用原始数据。它允许动态地重新转换数据,而不需要重新摄取存储在仓库中的数据。 在这篇文章中,我们将深入探讨在选择数据仓库时需要考虑的因素。...因为这个存储层被设计成完全独立于计算资源的可伸缩性,它确保了可以毫不费力地为大数据仓库和分析实现最大的可伸缩性。...当数据量在1TB到100TB之间时,使用现代数据仓库,如Redshift、BigQuery或Snowflake。

    5K31

    维度模型数据仓库(三) —— 准备数据仓库模拟环境

    (二)准备数据仓库模拟环境         上一篇说了很多数据仓库和维度模型的理论,从本篇开始落地实操,用一个小而完整的示例说明维度模型及其相关的ETL技术。...本篇详细说明数据仓库模拟实验环境搭建过程。        ...建立源数据数据库和数据仓库数据库         3. 建立源库表         4. 建立数据仓库表         5. 建立过渡表         6....关于日期维度数据装载         日期维度在数据仓库中是一个特殊角色。日期维度包含时间,而时间是最重要的,因为数据仓库的主要功能之一就是存储历史数据,所以每个数据仓库里的数据都有一个时间特征。...使用这个方法,在数据仓库生命周期中,只需要预装载日期维度一次。也可以按需添加数据。

    1K20
    领券