首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Robust Data Augmentation Generative Adversarial Networkfor Object Detection

    基于生成对抗性网络(GAN)的数据扩充用于提高目标检测模型的性能。它包括两个阶段:训练GAN生成器以学习小目标数据集的分布,以及从训练的生成器中采样数据以提高模型性能。在本文中,我们提出了一种流程化的模型,称为鲁棒数据增强GAN(RDAGAN),旨在增强用于目标检测的小型数据集。首先,将干净的图像和包含来自不同域的图像的小数据集输入RDAGAN,然后RDAGAN生成与输入数据集中的图像相似的图像。然后,将图像生成任务划分为两个网络:目标生成网络和图像翻译网络。目标生成网络生成位于输入数据集的边界框内的目标的图像,并且图像转换网络将这些图像与干净的图像合并。 定量实验证实,生成的图像提高了YOLOv5模型的火灾检测性能。对比评价表明,RDAGAN能够保持输入图像的背景信息,定位目标生成位置。此外,消融研究表明,RDAGAN中包括的所有组件和物体都发挥着关键作用。

    02

    学界 | 生成的图像数据集效果不好?也许你需要考虑内容分布的差异

    对生成数据集和真实数据集差异的探究目前也有不少成果,比如学习不同任务通用的图像特征、学习图像风格迁移等,这样可以让生成数据集中的图像看上去更像真实图像。不过这篇论文的作者们认为,图像风格的差异其实只是很小的因素,更重要的差异在于图像内容的差异,而且生成的图像应当对新的任务有帮助。以往的图像生成方法只能覆盖有限的场景、有限的物体、有限的变化,对真实世界物体的多变性和属性的分布刻画不足;而且作者们提出,以KITTI数据集为例,它的数据是在德国采集的,但也许别的研究人员使用这个数据集训练的系统是想要在日本使用的,场景内容一定会有所不同;甚至服务的任务目标也可以不同。这都是现有的数据生成方法没有解决,甚至没有考虑的方面。如果完全在虚拟环境中复制重现的话,资金和时间成本也都非常高昂。

    01
    领券