在软件测试中,测试数据是测试用例的基础,对测试结果的准确性和全面性有着至关重要的影响。因此,在进行软件测试时,需要生成测试数据以满足测试场景和要求。本文将介绍如何利用测试数据生成工具来快速生成大量的测试数据。
生成器(generator)是一种用来生成数据的对象。它们是普通函数的一种特殊形式,可以用来控制数据的生成过程。
Faker 是一个能够生成各种类型的假数据的 Python 库,这些数据可以用于测试或填充数据库等目的。它受到 PHP 的 Faker、Perl 的 Data::Faker 和 Ruby 的 Faker 的启发。
学习了一段时间的机器学习发现除了各种算法原理的公式推导比较麻烦之外,没有数据也是很痛苦,在训练各种算法模型的时候,一个良好的数据集就已经成功一大半了,那么剩下的就是调参优化。那么问题来了,不是任何时候我们都有一个现成的数据集可用,公共的数据集毕竟有限,如果自己去采集数据那么同样很烦,这是我们就要考虑自动生成数据集了。除了随机生成数据这种简单的方法之外,目前机器学习算法领域有各种函数库可以让我们调用,编程的难度不大,所以今天给大家介绍几个自动生成数据的Python库。
生成对抗网络(GANs)是一种深度学习模型,它由两部分组成:生成器(Generator)和判别器(Discriminator)。
生成学习(Generative Learning)在机器学习领域中占据了重要的位置。它通过学习数据分布的方式生成新的数据实例,这在多种应用中表现出了其独特的价值。本节将深入探讨生成学习的核心概念,明确区分生成学习与判别学习,并探索生成学习的主要应用场景。
本文基于谷歌的:《Introduction to Generative AI》 并且借助 ChatGPT 整理而成,帮助大家理解生成式 AI 这个概念。
AI科技评论今天介绍一篇发表于自然语言处理领域顶级会议ACL 2021的论文《LearnDA: Learnable Knowledge-Guided Data Augmentation for Event Causality Identification》。
在Python中,生成器(Generator)是一种特殊的迭代器,可以通过函数来创建。生成器可以动态地生成数据流,而不需要一次性生成所有的数据,从而在处理大量数据时具有很好的性能优势。
在AIGC取得举世瞩目成就的背后,基于大模型、多模态的研究范式也在不断地推陈出新。微软研究院作为这一研究领域的佼佼者,与图灵奖得主、深度学习三巨头之一的Yoshua Bengio一起提出了AIGC新范式——Regeneration Learning。这一新范式究竟会带来哪些创新变革?本文作者将带来他的深度解读。 作者 | 谭旭 AIGC(AI-Generated Content)在近年来受到了广泛关注,基于深度学习的内容生成在图像、视频、语音、音乐、文本等生成领域取得了非常瞩目的成就。不同于传统的数据理解任
本文介绍了数据字典生成工具、数据字典文档生成工具、NPOI入门、NPOI下载、NPOI中文教程、NPOI实例、DocX组件操作Word、PowerDesign读取、WORD读取和操作、NVelocity模版文件生成、数据字典生成工具之旅系列文章,涵盖了数据字典生成工具的原理、架构、使用技巧等方面的内容。
传统的生成指的是生成图像数据,生成有两种策略,一种是直接估计概率密度函数,机器学习模型分为两类一类是判别式模型,一类是生成式模型,生成模型是基于联合概率,判别性模型基于条件概率,生成式模型判别的是一种共生关系,判别式判别的是一种因果关系。知己估计概率密度函数生成的是概率密度函数或者概率密度函数的参数。另一种是绕开直接估计概率密度函数,直接学习数据样本生成的过程,里面没有显式函数的学习。第一种方式比较直观,但有的情况下直接生成数据样本更合适,可以避开显式概率密度函数的估计和设计,直接达到目的。
判别模型和生成模型是机器学习中两大重要的模型类别,它们在数据处理和预测方面有不同的应用和特点。以下是对这两种模型的详细讲解。
比起卡粉,闷痘,油光,手残,新一代年轻人的美丽可以来得更容易,快速变美只需要两步,打开美图,摆好pose——诠释那句话,“为了美丽,我坚持开美颜”。
来源:AI科技评论本文约2900字,建议阅读6分钟 本文教你如何快速变美。 比起卡粉,闷痘,油光,手残,新一代年轻人的美丽可以来得更容易,快速变美只需要两步,打开美图,摆好pose——诠释那句话,“为了美丽,我坚持开美颜”。 今年来,容貌焦虑和发际线危机已经不止一次搬上话事桌,甚至让大众误以为这并非为资本或是人的思维创造物。实际上,这是一个由意识形态到符号结构再到技术决定的逻辑蜕变过程,美图公司在后排默默观察。 1、美图秀秀推出“生发”功能 去年9月,美图秀秀推出增发功能,可填充发际线、增加刘海 。 今
基于生成对抗性网络(GAN)的数据扩充用于提高目标检测模型的性能。它包括两个阶段:训练GAN生成器以学习小目标数据集的分布,以及从训练的生成器中采样数据以提高模型性能。在本文中,我们提出了一种流程化的模型,称为鲁棒数据增强GAN(RDAGAN),旨在增强用于目标检测的小型数据集。首先,将干净的图像和包含来自不同域的图像的小数据集输入RDAGAN,然后RDAGAN生成与输入数据集中的图像相似的图像。然后,将图像生成任务划分为两个网络:目标生成网络和图像翻译网络。目标生成网络生成位于输入数据集的边界框内的目标的图像,并且图像转换网络将这些图像与干净的图像合并。 定量实验证实,生成的图像提高了YOLOv5模型的火灾检测性能。对比评价表明,RDAGAN能够保持输入图像的背景信息,定位目标生成位置。此外,消融研究表明,RDAGAN中包括的所有组件和物体都发挥着关键作用。
本文的目的是解释Conditional Tabular GANs的工作原理,因为目前我还没有看到类似这样的文章。表格数据生成是一个不断发展的研究领域。CTGANs 论文已成为许多其他机器学习架构的基础,这些架构如今构成了该研究领域的最新技术。
Datum在线模拟数据生成器网址:https://datum.codedefault.com/
生成对抗神经网络(Generative Adversarial Nets,GAN)是一种深度学习的框架,它是通过一个相互对抗的过程来完成模型训练的。典型的GAN包含两个部分,一个是生成模型(Generative Model,简称G),另一个是判别模型(Discriminative Model,简称D)。生成模型负责生成与样本分布一致的数据,目标是欺骗判别模型,让判别模型认为生成的数据是真实的;判别模型试图将生成的数据与真实的样本区分开。生成模型与判别模型相互对抗、相互促进,最终生成模型能够生 成以假乱真的数
生成对抗网络(GAN)包含两个部分:一个是生成器(generator),一个是判别模型(discriminator)。生成器的任务是生成看起来逼真与原始数据相似的样本。判别器的任务是判断生成模型生成的样本是真实的还是伪造的。换句话说,生成器要生成能骗过判别器的实例,而判别器要从真假混合的样本中揪出由生成器生成的伪造样本。生成器和判别器的训练过程是一个对抗博弈的过程,最后博弈的结果是在最理想的状态下,生成器可以生成足以“以假乱真”的样本。
生成对抗网络(Generative Adversarial Networks)是一种无监督深度学习模型,用来通过计算机生成数据,由Ian J. Goodfellow等人于2014年提出。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。生成对抗网络被认为是当前最具前景、最具活跃度的模型之一,目前主要应用于样本数据生成、图像生成、图像修复、图像转换、文本生成等方向。
生成式 AI (Generative AI)已经成为全球范围内的一个重要趋势,得到越来越多企业和研究机构的关注和应用,生成式 AI 的全球市场正在迅速扩大,据 IDC、摩根大通等多家研究机构数据预测,预计到 2025 年,全球生成式 AI 市场的规模将达到 110 亿美元,年复合增长率超过 50%。
在前端开发中,很大一部分工作都是将后台数据获取到后展示在前端界面上。如果接口是现成的,这个过程还相对容易一些,但是如果接口的开发和前端开发是同时进行的,在仅仅有接口文档并无测试环境的情况下,前端开发者就要痛苦了,所得非所见的盲写方式不但效率低下,也有很大的遗漏风险。如果我们有办法自己根据接口文档模拟这些数据,那开发过程中的体验就会好很多了。幸运的是,通过node.js,express和mock.js,我们可以非常容易的进行数据Mock。
是一个非常复杂的分布,那么使用这种方式难以获得一个比较理想的模型。这种强制性的约束会带来各种限制,而我们则是希望
Hello folks,我是 Luga,今天我们来聊一下人工智能生态核心技术—— AIGC,即 “生成式人工智能” 。
Python中的生成器函数是一种特殊的函数,它可以在调用时产生一个迭代器对象,用于按需生成一系列值,而不是一次性生成所有值。生成器函数提供了一种简单而有效的方式来处理大型数据集或无限数据流,同时节省内存和计算资源。在本文中,我们将深入探讨Python中的生成器函数,包括如何定义和使用它们,以及一些实际用例。
生成式 AI 可以自动生成 IT 系统中使用的代码或模型。这有助于加快开发过程并减少所需的人工劳动量。生成式人工智能还可以为 IT 系统创建人类开发人员可能没有考虑过的新设计或解决方案。
论文链接:https://arxiv.org/pdf/1908.07195v1.pdf
【新智元导读】美国罗格斯大学、Facebook AI 实验室和查尔斯顿学院的研究人员合作,在生成对抗网络(GAN)的基础上,对损失函数稍作修改,提出了创意生成网络(CAN),能够生成“具有创意”的画作
近年来,生成对抗网络(GAN)得到广泛的研究,已经在一些特定应用上与其它机器学习算法相结合,针对有监督学习、半监督学习、无监督学习任务都有许多新型算法涌现出来。同时,由于 GAN 无需显式建模任何数据分布就可生成Real-like的样本,因此已经广泛应用到了诸如计算机视觉、自然语言处理等领域中。
---- 新智元报道 来源:学术头条 【新智元导读】生成模型能生成高度逼真的图像,而且看起来与训练时采用的数据几乎毫无区别。这就提出了一个问题:如果有足够好的生成模型,我们还需要数据集吗? 当前,人工智能技术已经应用在我们日常生活中的方方面面,比如人脸识别、语音识别、虚拟数字人等。 但普遍存在的一个问题是,科研人员要想通过训练一个机器学习模型来执行某一特定任务(比如图像分类),往往需要使用大量的训练数据,而这些数据(集)却并不总是很容易获得。 比如,如果研究人员正在训练一辆自动驾驶汽车的计算机
本文是对发表于计算机视觉领域顶级会议ICCV 2021的论文“SynFace: Face Recognition with Synthetic Data” (基于生成数据的人脸识别)的解读。
优点: (1)简单,使用数据库已有的功能 (2)能够保证唯一性 (3)能够保证递增性 (4)步长固定 缺点: (1)可用性难以保证:数据库常见架构是一主多从+读写分离,生成自增ID是写请求,主库挂了就玩不转了 (2)扩展性差,性能有上限:因为写入是单点,数据库主库的写性能决定ID的生成性能上限,并且难以扩展 改进方法: (1)增加主库,避免写入单点 (2)数据水平切分,保证各主库生成的ID不重复
AI 科技评论按:虽然ACL 2017已经落下帷幕,但对精彩论文的解读还在继续。下面是 AI 科技评论在ACL现场记录的Zhilin Yang的报告。Zhilin Yang 是卡耐基·梅隆大学计算机学院语言技术研究院的一名博士生,William W. Cohen和Ruslan Salakutdinov两位大牛的高徒。 目前,QA对数据集的获取需要人工标注,这往往代价比较大。Z Yang他们提出了一种半监督的Generative Domain-Adaptive Nets模型,通过引入GAN和domain ta
我们在做查询报表编写进行测试的时候,需要很多的原始数据才能检测报表的准确度,如果通过软件里一步一步的操作生成原始数据会非常的耗时,所以才想写一个脚本来自动生成随机数据,方便进行测试。
随着生成模型(如 ChatGPT、扩散模型)飞速发展,一方面,生成数据质量越来越高,到了以假乱真的程度;另一方面,随着模型越来越大,也使得人类世界的真实数据即将枯竭。
人工智能(AI)近年来迅猛发展,已经成为推动科技进步的重要力量。其中,生成式人工智能(Generative AI)作为AI领域的重要分支,以其强大的生成和创造能力,吸引了广泛关注。本文将深入探讨生成式人工智能的定义、核心技术、应用领域以及面临的挑战,我们一起全面了解这一前沿技术。
三、从第二次迭代开始,每一次迭代会从上一次迭代返回结果的位置开始往下执行代码,遇到yield后返回迭代结果并保留生成器状态再退出。
读者在学习Django的orm开发时,不仅要关注到模型类的建立思想,更要主要将该模型类实践到模块中,并注意观察数据库中数据表的创建以及数据的增删改查。
对生成数据集和真实数据集差异的探究目前也有不少成果,比如学习不同任务通用的图像特征、学习图像风格迁移等,这样可以让生成数据集中的图像看上去更像真实图像。不过这篇论文的作者们认为,图像风格的差异其实只是很小的因素,更重要的差异在于图像内容的差异,而且生成的图像应当对新的任务有帮助。以往的图像生成方法只能覆盖有限的场景、有限的物体、有限的变化,对真实世界物体的多变性和属性的分布刻画不足;而且作者们提出,以KITTI数据集为例,它的数据是在德国采集的,但也许别的研究人员使用这个数据集训练的系统是想要在日本使用的,场景内容一定会有所不同;甚至服务的任务目标也可以不同。这都是现有的数据生成方法没有解决,甚至没有考虑的方面。如果完全在虚拟环境中复制重现的话,资金和时间成本也都非常高昂。
王小新 编译自 Hackernoon 量子位 出品 | 公众号 QbitAI 目前,生成对抗网络(GAN)作为一种处理图像生成问题的优秀方法,在超分辨率重建、风格迁移等领域已经做出了很多有意思的成就。
作者: Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao
来源:DeepHub IMBA 本文约1800字,建议阅读5分钟 本文解释了这两种模型类型之间的区别,并讨论了每种方法的优缺点。 分类模型可以分为两大类:生成式模型与辨别式模型。本文解释了这两种模型类型之间的区别,并讨论了每种方法的优缺点。 辨别式模型 辨别式模型是一种能够学习输入数据和输出标签之间关系的模型,它通过学习输入数据的特征来预测输出标签。在分类问题中,我们的目标是将每个输入向量x分配给标签y。判别模型试图直接学习将输入向量映射到标签的函数f(x)。这些模型可以进一步分为两个子类型: 分类器试图
在当今数据驱动的商业环境中,数据分析成为了支撑决策的核心工具。随着数据量的爆炸性增长,传统的数据处理方式已难以满足快速发展的需求。在这种背景下,大语言模型(如OpenAI的GPT系列)展现出了其在自动化数据分析报告生成中的巨大潜力和优势。
在图像理解领域,多模态大模型已经充分展示了其卓越的性能。然而,对于工作中经常需要处理的图表理解与生成任务,现有的多模态模型仍有进步的空间。
根据一些指标显示,关于生成对抗网络(GAN)的研究在过去两年间取得了本质的进步。在图像合成模型实践中的进步快到几乎无法跟上。
代码生成器一共有6个配置,每一个配置对象里面有很多的属性,现在开始解读每一个配置对象里面的具体属性代表什么意思
随机性一直是机器学习的重中之重。随机性一直作为工具或特征,出现在数据准备和学习算法中,将输入数据映射到输出数据以作出预测。为了理解机器学习中的统计方法,你必须了解机器学习中随机性的来源,即一种叫做伪随机数生成器的数学工具。
领取专属 10元无门槛券
手把手带您无忧上云