如今,一股数据科学的热潮正席卷国内各大高校。今年十月底,一系列数据科学的网络直播课在多所大学火爆异常,吸引来自北大、清华、北师大、哈工大、浙大等多所高校学生广泛参与。
随着企业数据规模的大幅增长,如何利用数据、充分挖掘数据价值,服务于企业经营管理成为当下企业数字化转型的关键。
[ 导读 ] 清华-青岛数据科学研究院(以下简称“数据院”)自2014年4月成立以来,秉承“学校统筹,问题引导,社科突破,商科优势,工科整合,业界联盟”24字指导方针,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才。
<数据猿导读> 百分点研发总监苏海波在大数据国际盛会“大统计与数据科学联合会议”上表示,人工智能需要学习,需要从历史行为中积累经验,这种经验的获取来源于其每天积累的海量数据,而积累海量数据需要大数据技
随着互联网的迅猛发展,在线学习逐渐成为主流,MOOC、慕课等概念如雨后春笋般涌现。以往高等学府才能接触到的计算机科学和数据科学,也随着这次风潮来到了公众面前。OSDSM,即数据科学开源课程,能够从理论和技术两方面,帮助人们学习有效利用数据的核心技能。 一、利用互联网成为“大咖” 随着互联网的迅猛发展,网络公开课的网站和APP等日益成熟,从听课、讨论到考试,一条龙的自学服务已经颇成规模。这些课程中,计算机科学尤其是数据科学相关的知识都已包含在内,用户通过使用Coursera、ebooks、StackOverf
“激发数据要素新动能,开启数字中国新征程”--今年数字中国峰会的主题凸显了当下数字经济发展、数字中国建设最大核心议题:如何充分发挥数据要素的价值。
随着互联网的迅猛发展,在线学习逐渐成为主流,MOOC、慕课等概念如雨后春笋般涌现。以往高等学府才能接触到的计算机科学和数据科学,也随着这次风潮来到了公众面前。OSDSM,即数据科学开源课程,能够从理论和技术两方面,帮助人们学习有效利用数据的核心技能。 一、利用互联网成为“大咖” 随着互联网的迅猛发展,网络公开课的网站和APP等日益成熟,从听课、讨论到考试,一条龙的自学服务已经颇成规模。这些课程中,计算机科学尤其是数据科学相关的知识都已包含在内,用户通过使用Coursera、ebooks、StackOve
<数据猿导读> 如今,数据科学家已是炙手可热,那些曾经对其毫无所知的企业,眼下也开始在全世界搜寻最好的数据科学家。问题在于,优秀数据科学家的标准是什么?和其他东西一样,数据科学家也是良莠不齐,招聘他们
1.优秀的数学家可以成为顶尖的数据科学家,但光是会在笔记本上写公式可不行,他们还必须熟练地运用计算机来处理数据。 2.如果他们的所有经验都来自学术机构,当他们面对现实问题时,可能会束手无策。寻找有实
经济新常态下,如何对海量数据进行分析挖掘以支撑敏捷决策、适应市场的快速变化,正成为企业数字化转型的关键。机器学习算法能识别数据模型,基于规律完成学习、推理和决策,正广泛的应用在金融、消费品与零售、制造业、能源业、政府与公共服务等行业的各种业务场景中,如精准营销、智能风控、产品研发、设备监管、智能排产、流程优化等。企业传统的机器学习虽然能有效支撑业务决策,但由于严重依赖数据科学家,其技术门槛高、建模周期长的特点正成为企业实现数据驱动的阻碍。
说到最近几年最热门的技术流行语,少不了云计算、大数据、人工智能、物联网等热词。不过,尽管人人(至少是企业界)言必称大数据,但是其在企业的采用周期要远远滞后于炒作周期。所以大数据从新奇酷的技术变成核心系统,从炒作到产品部署往往需要几年的时间。从去年开始,大家越来越感觉到这项技术已经在某种程度上陷入了停滞。不过好消息是,2017年大数据开始进入部署阶段,大数据的炒作逐渐散去,但它的应用却正在蓬勃发展,代表成熟度的标志性IPO也正在出现。而大数据在几年前经历的泡沫正在无可争议地转移到人工智能身上,过去几个月AI所
众所周知,数据科学是这几年才火起来的概念,而应运而生的数据科学家(data scientist)明显缺乏清晰的录取标准和工作内容。即使在2017年,数据科学家这个岗位的依然显得“既性感又暧昧”。 我随手搜索了几家国内国外不同领域的数据科学家招聘广告(国内:阿里巴巴,百度 | 海外: IBM,道明银行,Manulife保险),通过简单的归纳总结,我们不难发现其实岗位要求有很大的重叠部分: 学历要求:硕士以上学历,博士优先。统计学、计算机科学、数学等相关专业。 工作经历: 3年以上相关工作经验。 专业技能: 熟
导读:近日,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》。
高考阅卷紧锣密鼓,月底即将陆续放榜,届时考生将会面临与高考同样重要的问题:志愿填报。今年有一个获批的新增专业备受瞩目——数据科学与大数据技术。 “大数据”概念再火热,填报志愿的学生和家长也要冷静,这几个问题必须先想好: 当前大数据行业真的是人才稀缺吗? 学了几年后,大数据行业会不会产能过剩? 大数据行业最终需要什么样的人才? “热门专业”填报,有哪些注意点? 接下来就为您一一分析: 当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。 先看大数据人才缺口有多大? 根据L
随着如今5G时代来临,大数据技术和人工智能逐渐成为现代社会的主流技术,因此也有越来越多的人想去了解和学习大数据技术,一方面是为了紧跟时代步伐把握未来发展趋势,另一方面是为了自身利益谋求发展。随着近些年互联网科技的快速发展,大家不难发现学习大数据技术的发展前景确实未来可期。那么今天就带大家盘点一下,有哪些国内高校开设了大数据专业。
有人给予了大数据专家许多美好的称号,比如“数据开采者”、“数据建筑师”等,但其中最时髦的当属“数据科学家”。当记者在互联网上搜索“数据科学家”这个关键词时,看到的都是“21世纪最性感的职业”、“大数据行业最时髦的职业”等溢美之词。埃森哲大中华区技术咨询董事总经理何悠毅(Jouni Hakanen)表示,目前对数据科学家需求极大。 “性感”的数据科学家 记者采访人人游戏高级数据科学家陈弢时,他提到了当年在香港科技大学计算机系读博士的时候曾听教授这样调侃:“只有那些不能严格被算为科学而又想挤进科学的学科,才会在
大数据文摘作品 我国高校开设大数据本科专业,今年已经是第三年了。 3月21日下午,历时近一年时间,教育部公布了2017年度普通高等学校本科专业备案和审批结果的最新通知,第三批大数据本科专业院校获批。 教育部通知链接自取: http://www.moe.gov.cn/srcsite/A08/moe_1034/s4930/201803/t20180321_330874.html 2016年2月,北京大学、对外经济贸易大学、中南大学首次成功申请到“数据科学与大数据技术”本科新专业。2017年3月,第二批32所高校
引言 在大数据技术飞速发展的今天,谁才是我们大数据科研与工业界中最有威望的科学家呢?下面我们来进行梳理,共罗列了25位当今世界,无论是在学术与工业界都产生巨大影响的数据科学家(Data Scientists)。他(她)们推动了整个领域的发展,毫无疑问,无论是在学术界还是还工业界,他(她)们都是一座座山头式的人物。他(她)们是我们这些从事大数据产业发展的榜样。 他(她)们便是所谓的大师级人物。 数以万计的数据从业者通过他(她)们的论文、博客、视频、讲义等进行学习与进步,并找到相应的应用场景解决方案。这些大师为
大数据时代的到来催生了一门新的学科——数据科学。首先,本文探讨了数据科学的内涵、发展简史、学科地位及知识体系等基本问题,并提出了专业数据科学与专业中的数据科学之间的区别与联系;其次,分析现阶段数据科学的研究特点,并分别提出了专业数据科学、专业中的数据科学及大数据生态系统中的相对热门话题;接着,探讨了数据科学研究中的10个争议及挑战:思维模式的转变(知识范式还是数据范式)、对数据的认识(主动属性还是被动属性)、对智能的认识(更好的算法还是更多的数据)、主要瓶颈(数据密集型还是计算密集型)、数据准备(数据预处理还是数据加工)、服务质量(精准度还是用户体验)、数据分析(解释性分析还是预测性分析)、算法评价(复杂度还是扩展性)、研究范式(第三范式还是第四范式)、人才培养(数据工程师还是数据科学家)。再次,提出了数据科学研究的10个发展趋势:预测模型及相关分析的重视、模型集成及元分析的兴起、数据在先,模式在后或无模式的出现、数据一致性及现实主义的回归、多副本技术及靠近数据原则的广泛应用、多样化技术及一体化应用并存、简单计算及实用主义占据主导地位、数据产品开发及数据科学的嵌入式应用、专家余及公众数据科学的兴起、数据科学家与人才培养的探讨。最后,结合本文工作,为数据科学研究者给出了几点建议和注意事项。
大数据科学家有多牛?让我们从有史以来市值最高的科技公司苹果看起。为抢大数据科学家,苹果开出美金16万到20万(约合台币400万到600万)的年薪,以及任何你想得到的好福利:美味员工餐、健身中心、教育津
有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 数据科学的实践需要三个一般领域的技能:商业洞察、计算机技术/编程和统计学/数学。与询问对象有关,具体的重要技能集合总
推荐关注:北邮数据科学中心 官方微信:bupt-bigdata 官方网站:http://bupt.io/ 将不定期发布精彩讲座、沙龙通知 北邮数据科学中心 正式揭牌 北京邮电大学60周年甲子华诞到来当天10月17日,“北京邮电大学数据科学中心”成立仪式暨大数据发展研讨会在北邮科技大厦隆重举行。北京邮电大学数据科学中心是北京邮电大学依托该校信息与通信工程学院组建的下属研究单元。出席本次成立仪式的有中国工程院院士孙九林、北京邮电大学副校长郭军、中国电信云计算公司副总经理王兴刚、中移(苏州)软件技术有限公司CTO
这是一个好消息,如果你希望在2016年找一份数据科学的工作—在该领域职位空缺的数量正在不断增加,企业希望利用大数据来获得竞争优势。但事实上,找一份梦寐以求的数据科学工作就意味着你要具备一些技能的组合,你可能会惊讶学习哪些技能是雇主所最需要的。 最近,人们在CrowdFlower上针对Linkedin的3490个数据科学职位做了分析,并对最常出现的21个技能进行了排序。有些结果并不那么令人惊讶—SQL排在最前,而其它的结果可能是数据科学领域不断发展的领先指标。 如上所述,SQL是最常见的技能,在Link
大数据文摘作品 作者:托马斯·H·达文波特 2006年6月,乔纳森•高德曼(Jonathan Goldman)进入商务社交网站LinkedIn工作。作为斯坦福大学物理学博士,他醉心于无处不在的链接和丰富的用户资料。虽然这两者通常只能形成混乱的数据和浅显的分析,但当他着手挖掘人际联系时,却从中发现了“新大陆”。 他开始构建理论、检验预设,并研究出了模型。通过这些模型,他可以预测出某账号所归属的人际网络。高德曼觉得,在探索基础之上形成的新功能也许能为用户提供价值。 幸运的是,LinkedIn的联合创始人兼时任
【陆勤看点】如何认识和理解数据科学家?一种很好的方法就是查看数据科学家职位的描述,即数据科学家在公司中负责什么?数据科学家需要什么样职能要求?本文是一个数据科学部门招聘数据科学家的描述,值得一看。 数据科学部门正在寻找有热情应用统计学、机器学习和分析从数据集中获得洞见的数据驱动人。 在数据科学部门中,我们通过把那些最优秀数据工程师和数据科学家召集在一起,并让他们帮助我们的顾客从它们的数据中提取他们所需的相关信息。而这种人负责指挥和主导能够解答顾客各种疑问和从数据集中提取洞见的专业等级分析的交付。 关于这
月21日下午,历时近一年时间,教育部公布了2017年度普通高等学校本科专业备案和审批结果的最新通知,第三批大数据本科专业院校获批。 此次教育部最新公布的高校新增专业名单中,有248所学校获批,是过去两
数据是人了解世界的一种方式,所以缺乏物理实体的互联网企业无疑更具优势。而对于传统企业来说,数据基础薄弱,缺乏数据分析人才,无法实现精细化管理等问题都是横在大数据应用前的鸿沟。
在Google、Amazon、Facebook、Uber、Airbnb等公司成功的背后,有这样一批人:他们可以将大量的数据变为有价值的金矿,例如,搜索结果、定向广告、准确的商品推荐、可能认识的好友列表
数据科学是一门交叉学科,主要研究如何利用科学的方法、过程、算法或系统,从结构化的或非结构化的数据中提炼知识、洞察规律、获得见解。
数据科学家自我修养——一份数据科学的开放课程清单 最近一年以来,大数据这个概念被吹嘘的天花乱坠,仿佛你要是不说大数据就落伍了。继云计算之后,大数据已然成为IT行业的热点。《哈佛商业评论》更是宣称“数据科学家”是二十一世纪最性感的职业。所谓性感,既代表着难以名状的诱惑,又说明了大家都不知道它干的是什么。这里我不想重复什么是大数据,什么是数据科学,而是想以个人过去接近2年时间通过MOOC(开放课程)来学习数据科学的实践来给出一份个人建议的数据科学学习之路的课程清单。 数据科学家的自我修养 Drew Conway
数据科学家大显神通的时刻到了!但究竟什么是数据科学家?数据科学家需要具备怎样的技能?他们为何与众不同? 大数据时代 的到来驱动了数据,,带宽和处理能力成指数级的增长。现今数据科学这一新兴领域已经引发了众人极大的兴趣。Amazon前首席科学家表示“数据是原油,但石油需要加以提炼后才能使用,从事海量数据处理的公司就是炼油厂”。 如今,所有规模的组织都在尝试探索如何从大数据中挖掘出有价值信息。数据科学家具备从 大数据挖掘 “金矿”的能力,并根据挖掘出的信息用来对大量移动设备数据、社交媒体流数据、医疗成像、智能电网
数据科学家大显神通的时刻到了!但究竟什么是数据科学家?数据科学家需要具备怎样的技能?他们为何与众不同? 大数据时代的到来驱动了数据,,带宽和处理能力成指数级的增长。现今数据科学这一新兴领域已经引发了众
编者按:最近关于高校专业变动的消息引发不小的轰动。一条是:2016年底,教育部公布全国25个省份175所高校大幅撤销576个学位点,另一条是:35所高校申请“数据科学与大数据技术“的本科新专业获批。 这是一个新旧变革的时代,世界唯一能确定的就是不确定性。正如近期高校专业的一系列调整,新的技术驱动下,各行各业无不在变革浪潮中,高校所设专业与市场人才需求渐行渐远,“数据科学与大数据技术"这个学科却逆流而上。 2016年2月,教育部公布新增“数据科学与大数据技术”本科专业,首批北京大学、对外经济贸易大
导读:数据科学家是干什么的呢?哪些地方需要数据科学家?怎么样才能成为数据科学家?如果你正因为这些问题而犹豫要不要开始学习数据科学,那么我可以告诉你,成为数据科学家其实非常简单。 调查发现,数据挖掘和分
在推进大数据应用的过程中,企业主要面临以下三方面的困难,一是认识上的不足,很多人并不知道大数据是什么,因此也就无法知道如何正确地使用大数据工具;二是投入上的不足,大数据的应用可能需要相当大的投入,一般的企业可能很难承受;三是大数据人才的匮乏将制约大数据应用的发展。 大数据相关人才的欠缺将会成为影响大数据市场发展的一个重要因素。据Gartner预测,到2015年,全球将新增440万个与大数据相关的工作岗位,且会有25%的组织设立首席数据官职位。大数据的相关职位需要的是复合型人才,能够对数学、统
<数据猿导读> 大数据出现以来就呈现出“井喷式”的发展,人人都说大数据,人人都想掘金大数据,然而行业的崛起就体现出人才的稀缺,中国计算机学会大数据专家朱扬勇教授就提到未来数据科学家将成热门职业 大数据的出现颠覆了我们既有的一些观念。比如,过去衡量是不是金融中心,主要看全球有多少家金融机构入驻。但是未来,金融中心就是有多少金融的数据资源在这里流通。如果将来在华尔街买股票的时候,要看一下上海的数据发布才能决策,到那个时候,上海就离全球金融中心不远了 当前,“土地财政”已经难以为继,但“盘活政府数据资源,建立数
最近一年以来,大数据这个概念被吹嘘的天花乱坠,仿佛你要是不说大数据就落伍了。继云计算之后,大数据已然成为IT行业的热点。《哈佛商业评论》更是宣称“数据科学家”是二十一世纪最性感的职业。所谓性感,既代表着难以名状的诱惑,又说明了大家都不知道它干的是什么。这里我不想重复什么是大数据,什么是数据科学,而是想以个人过去接近2年时间通过MOOC(开放课程)来学习数据科学的实践来给出一份个人建议的数据科学学习之路的课程清单。 数据科学家的自我修养 Drew Conway给出的数据科学的一个文氏图,很好的诠释了数据科
但如何能成为一个数据科学家呢? 首先,各个公司对数据科学家的定义各不相同,当前还没有统一的定义。但在一般情况下 ,一个数据科学家结合了软件工程师与统计学家的综合技能,并且在他或者他希望工作的领域拥有大
《2017大数据及人工智能人才发展报告》显示,截至2017年12月,大数据及人工智能人才需求迅猛增长,增幅高达795%。据专家估算,未来五年,中国大数据人才需求至少为100万人,反映出了我国大数据产业相关人才极度匮乏的现状。
虽然数据科学家的需求一直在快速增长,但事实是在业内还没有对数据科学家的准确定义。有人开玩笑说,「数据科学家就是住在硅谷的数据分析师」,甚至有人画了这样的漫画:
4月26日清华大学举办大数据时代高端论坛,宣布清华-青岛数据科学研究院正式成立,并推出多学科交叉培养的大数据硕士项目。该项目今年9月将正式培养首批150名从清华校内学生中选拔产生的大数据硕士学位研究生
今天是场景构建的基础元年,大数据不是博眼球而是深耕行业,其与人工智能相结合是未来趋势 | 大咖周语录
作者|杜圣东 “数据科学家走在通往无所不知的路上,走到尽头才发现,自己一无所知。”-Will Cukierski,Head of Competitions & Data Scientist at Kaggle 最近不少网友向我咨询如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题。由于大数据技术涉及内容太庞杂,大数据应用领域广泛,而且各领域和方向采用的关键技术差异性也会较大,难以三言两语说清楚,本文从数据科学和大数据关键技术体系角度,来说说大数据的核
数据科学教育特点:不仅依赖于传统的信息管理于信息系统专业,更依赖于计算机、数学、统计等学科。大数据专业十一门涉及广泛的交叉性的学科。
在Google、Amazon、Facebook、Uber、Airbnb等公司成功的背后,有这样一批人: 他们可以将大量的数据变为有价值的金矿,例如,搜索结果、定向广告、准确的商品推荐、可能认识的好友列
经过无数权威媒体的反复轰炸,我们大致已经相信,数据科学家是21世纪最神秘最性感最多金的职业,他们是大数据时代数据炸弹的拆弹专家,企业数字化经营的发动机,他们的身价堪比NFL四分卫,而且,他们比昆仑山上的雪豹数量还少。 显然,数据科学家个个都是十八般数据分析武艺样样精通的绝世高手,但他们近来也有烦心事。不久前,开源数据库SciDB开发商Paradigm4进行的一项针对111名北美数据科学家的调查显示,71%的数据科学家认为数据来源的多样性(IT经理网记者此前曾与百度创始七剑客之一,酷我音乐CEO雷鸣
R语言编程跟伪数据科学为何扯上了关系?R是一种有20多年历史的开源统计编程语言及编译环境,是商业化产品S+的后继者。R一直以来都局限于内存数据处理,在统计圈子里非常流行,并因其出色的可视化效果为人称道。一些新型的开发环境通过创建R程序包或者将其扩展到分布式架构里(比如将R与Hadoop结合的RHadoop),将R(限于在内存里处理数据)的能力扩大。其他程序语言当然也存在跟伪数据科学沾边的情况,比如说SAS,但不及R这么流行。说到SAS,它价格高昂,在政府机构或者实体企业的应用更为广泛。但在过去10年数据快速增长的领域(如搜索引擎、社交媒体、移动数据、协同过滤推荐等)运用不多。R跟C、Perl或者Python的语法不一样(后三者语法根源一样),其简易性使得写R的程序员比较广泛。R还有很多程序包和不错的用户界面,SAS却难学很多。
本文的英文原文地址是:Python for Data Science vs Python for Web Development,发布时间是10月29日。译者一开始在Python日报上看到推荐,初步看看了,觉得对于决定学习Python的方向有一定参考价值。不过,在翻译过程中,越来越觉得这其实就是一篇搞Python数据科学培训的公司写的软文,里面写的内容还是比较浅的,只适合像我这样的初学者了解大致情况。当然,文章提到了Python作为网络开发技能的市场需求并不是很高,这点感觉并不是没有根据。作为一篇软文,它成
各位同学对于大数据编程语言知道多少呢?今天加米谷带着大家一起来看看常见的3种大数据编程语言,一起来看看他们的功能与特征。
领取专属 10元无门槛券
手把手带您无忧上云