我把员工的名字保存在文本文件中。我处理了这个文件,并比较了一个已经存在的名称。当我使用most_similar方法检查时,我发现即使在语料库中存在完全相同的名称,它也会返回完全无关的名称。
import gensim
training_file='todel.txt'
mylist=list()
with open(training_file, encoding="iso-8859-1") as f:
for i, line in enumerate(f):
mylist.append(gensim.models.doc2vec.Tag
我正在探索句子转换器,并偶然发现了这个。它展示了如何对我们的自定义数据进行培训。但我不知道该怎么预测。如果有两个新句子,如1)这是第三个例子,2)这是第三个例子。我怎么能预测到这些句子有多相似呢?
from sentence_transformers import SentenceTransformer, InputExample, losses
from torch.utils.data import DataLoader
#Define the model. Either from scratch of by loading a pre-trained model
model = Sen
我有一份文件清单如下:
["Display is flickering"]
["Battery charger is broken"]
["Hard disk is making noises"]
这些文本文档只是免费文本。我已经处理了标记化,柠檬化,停止词删除,现在我想根据一个单词列表来分配标签。示例:
{"#display":["display","screen","lcd","led"]}
{"#battery":["battery
我想从我的数据库中删除类似的数据。现在我可以从我的数据库中删除重复的数据并保留一个。
$sql = "UPDATE `clf_ads` SET `enabled`= '0' WHERE adid NOT IN (SELECT * FROM (SELECT MAX(adid) FROM clf_ads GROUP BY adtitle) x)";
if ($conn->query($sql) === TRUE) {
echo "Record deleted successfully";
} else {
echo "Error de
我想要找到一个查询行和另外10个行之间的余弦相似度(或者欧几里得距离,如果更容易)。这些行都是nan值,因此如果列是nan,则忽略它们。
例如,查询:
A B C D E F
3 2 NaN 5 NaN 4
df =
A B C D E F
2 1 3 NaN 4 5
1 NaN 2 4 NaN 3
. . . . . .
. . . . . .
因此,我只想得到查询的每个非空列与df列中的行之间的余弦相似性。因此,对于df中的第0行,B和F在查询和df中都是非空的。
然后,
我用刮刮爬行了几个欺凌论坛,并将结果作为字典使用。
我现在要做的是提取一个句子的关键字,例如He harassed me in the chat,这将给出关键字Harassed和chat,并将这些关键字与我的单词字典进行比较,并为它的相关性分配一个值(在这种情况下,这显然会提供接近1.0的高值,因为它与欺凌非常相关)。
我已经把关键词提取下来了,所以现在我只需要知道如何进行比较。
我看过使用pandas、scikit和nltk的情况,但它们似乎对多个字段的字典最有效,而我只有一袋单词。
有什么NLP库可以帮我吗?如果不这样做,最好的办法是什么?
哪些Microsoft认知服务(或Azure机器学习服务?)是最好的,也是最少的工作,用来解决查找给定文章的相似文章的问题。文章是一串文本。假设我没有关于文章的用户交互数据。
Microsoft Cognitive Services中有什么东西可以开箱即用地解决这个问题吗?似乎我不能使用推荐API,因为我没有交互/用户数据。
安东尼