通用文字识别OCR是一种文本识别技术,它可以从扫描的文档、图像和其他来源快速准确地识别文本,并将其转换为可编辑的文本文件,尤其是涉及多种语言的文本识别。它通常由专业的图像处理应用程序来实现,它可以自动识别文本,比手动输入快多了。
API是一套用于构建应用软件程序的规范,协议和工具。在本文中,我们从2017年的清单中删除了停用的API,并利用新元素对其进行了更新。并且,所有的API被归类到以下几个领域:
对于做工程项目和搞科研的人来说,有现成的模块或工具使用是一件多么美妙的事情啊,无需访问源码或理解内部工作机制的细节即可完成相应的任务。常用的方法是调用一些API,即一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力。本文总结对于机器学习行业者有用的50多个API,主要涉及的领域如下:
API 是一套用于构建软件程序的协议和工具。对于应用开发者而言,有了开放的 API,就可以直接调用其他公司做好的功能为我所用,这在很大程度上提升了工作效率。本文整理了以下四大类共 50 种 API,为你节省了寻找资源的时间。
API 是一套用于构建软件程序的协议和工具。对于应用开发者而言,有了开放的 API,就可以直接调用其他公司做好的功能为我所用,这在很大程度上提升了工作效率。
在如今信息爆炸的时代,我们需要快速而准确地从海量数据中找到我们所需的信息。对于开发人员来说,如果能够通过编程的方式,自动提取关键词,就能够节省大量的时间和精力。今天,我要向大家介绍的是一款高效识别关键词的API接口,它可以帮助用户轻松找到所需的信息。
该清单按照字母排序,对 API 的概述是基于对应官网所提供的信息整合而成。要是大家发现该清单中错过了某些当前流行的 API,可以在评论中告知。
大数据文摘作品 编译:大茜、Shan LIU、云舟 还在为找不到机器学习的API而烦恼吗?本篇文章将介绍一个包含50+关于人脸和图像识别,文本分析,NLP,情感分析,语言翻译,机器学习和预测的API列表,快快收藏吧~ API是一套用于构建应用软件程序的规范,协议和工具。在本文中,我们从2017年的清单中删除了停用的API,并利用新元素对其进行了更新。并且,所有的API被归类到以下几个领域: 人脸和图像识别 文本分析,NLP,情感分析 语言翻译 机器学习和预测 在每组应用中,列表中的元素按字母顺序排列。相
随着基于人工智能与机器学习的应用如雨后春笋般不断涌现,我们也看到有很多提供类似功能的 API 悄悄登上了舞台。 API 是用于构建软件应用的程序、协议以及工具的组合;本文是对2015 中这个列表的修正与完善,移除了部分被废弃的 API ;我们也添加了最近由 IBM、Google、Microsoft 这些大厂发布的 API 。所有的 API 可以根据应用场景进行分组: 人脸与图片识别。 文本分析,自然语言处理以及情感分析。 语言翻译。 预测以及其他的机器学习算法。 在具体的每个分组内,我们根据首字母顺序排序;
翻译 | Drei 编辑 | Just 出品 | 人工智能头条(公众号ID:AI_Thinker) API 是一套用于构建软件程序的协议和工具。对于应用开发者而言,有了开放的 API,就可以直接调用其他公司做好的功能为我所用,这在很大程度上提升了工作效率。 本文整理了以下四大类共 50 种 API,为你节省了寻找资源的时间。总之,你所需要的可能基本都在下面了: 人脸和图像识别(Face Image Recognition) 文本分析,自然语言处理,情感分析(Text Analysis, NLP, Senti
本篇基于 2017 年的推荐清单做了一些改进——去除了一些不再进行维护的 API,并且更新了一些新的 API。主要覆盖如下方向:
摘要 “人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence)英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技
语音识别技术,也被称为自动语音识别,目标是以电脑自动将人类的语音内容转换为相应的文字和文字转换为语音。
a、鹅厂近期发布了自己的人工智能 api,包括身份证ocr、名片ocr、文本分析等一堆API,因为前期项目用到图形OCR,遂实现试用了一下,发现准确率还不错,放出来给大家共享一下。
本挖掘典型地运用了机器学习技术,例如聚类,分类,关联规则,和预测建模。这些技术揭示潜在内容中的意义和关系。文本发掘应用于诸如竞争情报,生命科学,客户呼声,媒体和出版,法律和税收,法律实施,情感分析和趋势识别。 在本篇博客帖中,你将会学习到如何将机器学习技术应用到文本挖掘中。我将会向你展示如何使用RapidMiner(一款流行的预测分析开源工具)和亚马逊S3业务来创建一个文件挖掘应用。亚马逊S3业务是一项易用的存储服务,可使组织在网页上的任何地方存储和检索任意数量的数据。 掘模型产生的结果可以得到持续的推导并
本挖掘典型地运用了机器学习技术,例如聚类,分类,关联规则,和预测建模。这些技术揭示潜在内容中的意义和关系。文本发掘应用于诸如竞争情报,生命科学,客户呼声,媒体和出版,法律和税收,法律实施,情感分析和趋势识别。 在本篇博客帖中,你将会学习到如何将机器学习技术应用到文本挖掘中。我将会向你展示如何使用RapidMiner(一款流行的预测分析开源工具)和亚马逊S3业务来创建一个文件挖掘应用。亚马逊S3业务是一项易用的存储服务,可使组织在网页上的任何地方存储和检索任意数量的数据。 掘模型产生的结果可以得到持续的推
【新智元导读】作者Geethika Bhavya Peddibhotla列出了49个人工智能领域常用的API,包括机器学习和预测、人脸和图像识别、文本和情感分析以及翻译。下文只是列举式陈述,有其他推荐
人工智能正在成为新一代技术变革的基础技术,但从头开始为自己的应用和业务开发人工智能程序既成本高昂,且往往很难达到自己想要的性能表现,但好在我们有大量现成可用的 API 可以使用。开发者可以通过这些 API 将其它公司提供的智能识别、媒体监测和定向广告等人工智能服务集成到自己的产品中。机器之心在 2015 年底就曾经编译过一篇介绍当前优质人工智能和机器学习 API 的文章《技术 | 50 个常用的人工智能和机器学习 API》,列举了 50 个较为常用的涉及到机器学习、推理预测、文本分析及归类、人脸识别、语言翻译等多个方面的 API。一年多过去了,好用的 API 也出现了一些新旧更迭,现在是时候对这篇文章进行更新了。
OCR技术指的是 Optical Character Recognition 或光学文字识别技术,即从图像中识别文字,并将其转换为电子文本或机器可读格式。它可以被广泛应用于图像处理,文字处理,自然语言处理,计算机视觉和数据挖掘领域。
这段代码设置了百度AI的APP_ID、API_KEY和SECRET_KEY,并使用这些参数创建了一个AipOcr对象。
软件还有PandaOCR PRO(就是专业版)专业版49.9三个授权,我觉得免费版就足够使用了,有需要的可以购买专业版。
Tesseract 是一个开源的 OCR(光学字符识别)引擎,最初由惠普实验室开发,后来由 Google 接管并开源。OCR 是一种将图像中的文本转换为可编辑文本的技术,它可以自动识别图像或扫描文档中的文字,并将其转换为数字形式。
笔者在前文《Azure AI 服务之文本翻译》中简单介绍了 Azure 认知服务中的文本翻译 API,通过这些简单的 REST API 调用就可以轻松地进行机器翻译。如果能在程序中简单的集成语音转文本
PandaOCR是一款多功能OCR图文识别+翻译+朗读+弹窗+图床+二维码免费工具。
日前,kdnuggets 上的一篇文章对比了三大公司(谷歌、微软和亚马逊)提供的机器学习服务平台,对于想要启动机器学习项目的公司或是数据科学新手来说,提供了非常多的指导和建议。 AI 研习社将原文编译整理如下: 对于大多数企业来说,机器学习就像航空航天一样遥远,听起来既昂贵,还需要高科技人才。从某种角度来说,如果你想建立一个像 Netflix 一样好的推荐系统,那确实是昂贵且困难。但是,目前这个复杂的领域有一个趋势:一切皆服务(everything-as-a-service)——无需太多投资,即可快速启动机
本文将从图片中文字提取的原理以及应用案例等多方面进行讲述,希望一文能为你讲透通用文字识别。
译者 | reason_W 编辑 | Just 对大多数企业来说,机器学习听起来就像航天技术一样,属于花费不菲又“高大上”的技术。如果你是想构建一个 Netflix 这种规模的推荐系统,机器学习确实是这样的。(注:Netflix是美国流媒体巨头、世界最大的收费视频网站,曾于 2017 年买下《白夜追凶》全球播放权。)但受万物皆服务(everything-as-a-service)这一趋势的影响,机器学习这一复杂的领域也正在变得越来越接地气。所以现在哪怕你只是一个数据科学领域的新手,并且只想实现一些很容易
据外媒报道,近日,谷歌更新了其云端文本转语音(Cloud Text-to-Speech)API。
你可以将Web API看作是神奇的通道,它让JavaScript能够与Web浏览器进行交互,并访问各种酷炫的功能。
小编昨天为大家分享了Windows系统下的一款功能强大且免费的 OCR 开源工具 Umi-OCR。
ComPDFKit提供专业、全平台支持的PDF开发库,包括Windows、Mac、Linux、Android、iOS、Web平台。开发者可以快速、灵活整合PDF功能到各开发平台的软件、程序、系统中。丰富的功能,多种开发语言,灵活的部署方案可供选择,满足您对PDF文档的所有需求。
在过去的几十年里,文本纠错技术已经取得了巨大的进展,从最初的基于规则的纠错系统到现在的基于机器学习的纠错系统,技术的发展已经帮助人们解决了大量的文本纠错问题,随着机器学习技术的发展,文本纠错技术也发生了重大变化。
腾讯云释义(Tencent Cloud Explanation,TCEX)是一款为开发者提供的简单易用的内容解析工具。该工具集成了腾讯云光学字符识别(OCR)和腾讯云自然语言处理(NLP)能力,支持对文本进行分类、理解内容的情感、命名实体识别、合同关键信息抽取。开发者无需算法背景,通过在线标注,即可训练生成自定义的模型。
hi,大家好~我是shadow,一枚设计师/全栈工程师/算法研究员,目前主要研究方向是人工智能写作和人工智能设计,当然偶尔也会跨界到人工智能艺术及其他各种AI产品。
随着 AI 的不断发展,我们前端工程师也可以开发出一个智能语音机器人,下面是我开发的一个简单示例,大家可以访问这个视频地址查看效果。
通用文字 OCR 识别 API 是一种功能强大的服务,可用于多场景、多语种的整图文字检测和识别,通过将OCR技术应用于学校环境,可以实现教育资源的数字化和学习过程的自动化。
在 “What’s new in Android P Beta” 中我们已经谈到 Android 的两个新文本特性。现在既然 Android P Beta 3 及最终 API均已推出 ,我们也该深入地探究它究竟有哪些新文本特性。众所周知, TextView 是 Android 视图系统中最关键的组件之一。这也是我们一直在面向开发者及用户的特性及 API 改进方面投资的原因。
I/O 大会的第一天,我们公布了下一个版本的 Android,也就是 Android P 的 beta 版本。Android P 将 AI 定位为操作系统的核心,并侧重于提供智能且简洁的体验。让我们一起来了解下这个版本带来了哪些全新功能。 Android P Beta 为开发者提供了丰富的方法来使用这些全新的、智能化的功能,并且更好地提升用户参与度。 您可在 Pixel 设备上立刻参与 Android P Beta的体验。另外,得益于 Project Treble,您也可在我们合作伙伴推出的高端机型 (请
最近两天需要做一个python的小程序, 就是实现人与智能机器人(智能对话接口)的对话功能,目前刚刚测试了一下可以实现, 就是能够实现个人与机器的智能对话(语音交流)。
在接口自动化工作中,经常需要处理文字识别的任务,而OCR(Optical Character Recognition,光学字符识别)库能够帮助我们将图像中的文字提取出来。Python中有几个常用的OCR库,包括pyocr、pytesseract和python- tesseract、EasyOCR。本文将对它们进行比较,并提供一些示例代码来演示它们在实际接口自动化工作中的应用。
在日常生活、工作中, 受限于拍照技术、拍摄条件等制约,得到的文本图像往往存在光照不均、角度倾斜、文字模糊等情况。这种低质量的文本图像不仅不利于保存和后续研究,也不利于光学字符识别。为了解决以上问题,特别调研了业内相关的产品,发现腾讯云AI的文本图像增强能力可以很好的打造一个掌上扫描仪。
云API团队在云学院上线了一套视频教程,目的是和大家分享如何进行API、SDK和CLI的使用。
经历一年多的开发和数月以来早期用户的反复测试,最新 Android 平台 —— Android 9 Pie 终于正式面向全球发布!
最近在研究语音识别方向,看了很多的语音识别的资料和文章,了解了一下语音识别的前世今生,其中包含了很多算法的演变,目前来说最流行的语音识别算法主要是依赖于深度学习的神经网络算法,其中RNN扮演了非常重要的作用,深度学习的应用真正让语音识别达到了商用级别。然后我想动手自己做一个语音识别系统,从GitHub上下载了两个流行的开源项目MASR和ASRT来进行复现,发现语音识别的效果没有写的那么好,其中如果要从零来训练自己的语言模型势必会非常耗时。
腾讯云自然语言处理(Natural Language Process,NLP),正式发布 v1.0 版本。产品依托于海量中文语料累积,全面覆盖了从词法、句法到篇章等各个粒度的NLP能力。其中,词法分析包括智能分词、命名实体识别等;句法分析包括文本纠错、句向量等;篇章分析包括情感分析、敏感词识别、文本审核等。
有了如navigator.mediaDevices.getUserMedia这样的api结合新版Chrome为Android提供的照片选择器,无论是捕获图像、获取实时视频数据还是上传本地图片都变得非常容易。不过目前这些动态或静态图像数据处理都是不透明的,尽管图片实际上包含了许多有趣的特征,如人脸、条形码和文本。
近年来,随着人工智能技术的快速发展,OCR(Optical Character Recognition,光学字符识别)技术得到了广泛的应用和重视。OCR技术用于将印刷或手写的文本转化为可编辑的数据,极大地提高了数据处理的效率和精确度。腾讯云的文字识别服务提供了强大而可靠的OCR功能,为开发者和AI爱好者提供了便捷的文字识别解决方案。
Azure 认知服务的目标是帮助开发人员创建可以看、听、说、理解甚至开始推理的应用程序。 Azure 认知服务中的服务目录可分为五大主要支柱类别:视觉、语音、语言、Web 搜索和决策。开发人员使用 Azure 认知服务能够轻松地将认知功能添加到其应用程序中。 Azure认知服务主要包含:人脸、表单识别、墨迹识别等内容。上次已经介绍过人脸识别服务了,这次介绍下表单识别器如何使用。
领取专属 10元无门槛券
手把手带您无忧上云