首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    学习July博文总结——支持向量机(SVM)的深入理解(下)

    接上篇博文《学习July博文总结——支持向量机(SVM)的深入理解(上) 》; 三、证明SVM 凡是涉及到要证明的内容和理论,一般都不是怎么好惹的东西。绝大部分时候,看懂一个东西不难,但证明一个东西则需要点数学功底;进一步,证明一个东西也不是特别难,难的是从零开始发明创造这个东西的时候,则显艰难。因为任何时代,大部分人的研究所得都不过是基于前人的研究成果,前人所做的是开创性工作,而这往往是最艰难最有价值的,他们被称为真正的先驱。牛顿也曾说过,他不过是站在巨人的肩上。你,我则更是如此。正如陈希孺院士在他的著作

    09

    最小二乘法与正态分布

    17、18 世纪是科学发展的黄金年代,微积分的发展和牛顿万有引力定律的建立,直接的推动了天文学和测地学的迅猛发展。当时的大科学家们都在考虑许多天文学上的问题,这些天文学和测地学的问题,无不涉及到数据的多次测量、分析与计算;17、18 世纪的天文观测,也积累了大量的数据需要进行分析和计算。很多年以前,学者们就已经经验性的认为,对于有误差的测量数据,多次测量取算术平均是比较好的处理方法。虽然缺乏理论上的论证,也不断的受到一些人的质疑,取算术平均作为一种异常直观的方式,已经被使用了千百年, 在多年积累的数据的处理经验中也得到相当程度的验证,被认为是一种良好的数据处理方法。

    03
    领券