首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    云视角下的视频编码:从虚拟化走向容器化

    云计算是一种基于互联网的计算方式,共享的软硬件资源和信息可以按需求提供给计算机各种终端和其他设备。在云计算环境下,软件即服务(SaaS)的虚拟化平台成为主流,视频编码服务也受到影响,逐渐转型。 容器技术为提升云计算性能和效率开辟了新的可能性,非常适合计算复杂度高,可拆分的任务,也为视频编码带来了新的动力与生机。本文首先简单对比了容器技术与传统虚拟化技术,然后介绍了针对视频编码的通用容器化思想并分析其优势。最后,结合某些具体的视频编码应用场景,给出特定的适合的容器化解决方案。 1. 容器与虚拟机的区别 服务端

    09

    用于机器视觉任务的图像压缩前处理

    最近,越来越多的图像被压缩并发送到后端设备进行机器视觉分析任务(例如目标检测),而不仅仅是供人类观看。然而,大多数传统的或可学习的图像编解码器都是最小化人类视觉系统的失真,而没有考虑到机器视觉系统的需求。在这项工作中,我们提出了一种用于机器视觉任务的图像压缩前处理方法。我们的框架不依赖于可学习的图像编解码器,而是可用于传统的非可微分编解码器,这意味着它与编码标准兼容,并且可以轻松部署在实际应用中。具体而言,我们在编码器之前增加一个神经网络前处理模块,用于保留对下游任务有用的语义信息并抑制无关信息以节省比特率。此外,我们的神经网络前处理模块是量化自适应的,可以在不同的压缩比下使用。更重要的是,为了联合优化前处理模块和下游机器视觉任务,我们在反向传播阶段引入了传统非可微分编解码器的代理网络。我们在几个具有不同骨干网络的代表性下游任务上进行了广泛的实验。实验结果表明,我们的方法通过节省约20%的比特率,在编码比特率和下游机器视觉任务性能之间取得了更好的权衡。

    06
    领券