首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    渣土车识别监测 渣土车未盖篷布识别抓拍算法

    渣土车识别监测 渣土车未盖篷布识别抓拍算法通过yolov7深度学习训练模型框架,渣土车识别监测 渣土车未盖篷布识别抓拍算法在指定区域内实时监测渣土车的进出状况以及对渣土车未盖篷布违规的抓拍和预警。渣土车识别监测 渣土车未盖篷布识别抓拍算法的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,渣土车识别监测 渣土车未盖篷布识别抓拍算法每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。

    01

    未系安全带识别系统

    未系安全带识别系统通过python+yolo智能视频分析技术,未系安全带识别系统对画面中高空作业人员未系安全带行为进行监测,未系安全带识别系统监测到人员未穿戴安全带时,未系安全带识别系统立即通知后台人员及时处理触发告警。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好。在介绍Yolo算法之前,我们回忆下RCNN模型,RCNN模型提出了候选区(Region Proposals)的方法,先从图片中搜索出一些可能存在对象的候选区(Selective Search),大概2000个左右,然后对每个候选区进行对象识别,但处理速度较慢。

    00

    半天实战经历快速让小白明白深度学习增强半监督人脸识别噪声

    1、简介 尽管深度人脸识别从大规模训练数据显著受益,但目前的瓶颈是标签成本。解决这个问题的一个可行的解决方案是半监督学习,利用一小部分的标记数据和大量的未标记数据。然而,主要的挑战是通过自动标签累积的标签错误,损害了培训。在本文中,我们提出了一个有效的对半监督人脸识别具有鲁棒性的解决方案。具体地说,我们引入了一种名为GroupNet(GN)的多代理方法,以赋予我们的解决方案识别错误标记的样本和保存干净样本的能力。我们表明,即使有噪声的标签占据了超过50%的训练数据,仅GN在传统的监督人脸识别中也达到了领先的精度。进一步,我们开发了一种半监督人脸识别解决方案,名为噪声鲁棒学习标签(NRoLL),它是基于GN提供的鲁棒训练能力。它从少量的标签数据开始,因此对一个lar进行高可信度的标签 索引术语-半监督的人脸识别,有噪声的标签学习。

    04

    软件造价之:浅析快速功能点方法度量软件的规则及过程

    快速功能点方法是一种软件规模度量方法。该方法适用于软件项目早期、中期、后期等各个阶段的规模估算或测量。   采用优化后的功能点方法——快速功能点方法进行规模估算或测量的基本过程或步骤如下: 确定计数类型→识别系统边界→识别功能点计数项→计算未调整的功能点数→计算调整后的功能点数。 1、确定计数类型   根据需求或项目的类型确定计数类型。计数类型分为三种:新开发、延续开发及已有系统计数。   对于新开发需求或项目,对预计(或实际)投产的功能进行计数;   对于延续开发需求或项目,对预计(或实际)新增、修改及删除的功能均进行计数;   对于已有系统,对实际的功能进行计数。 2、识别系统边界   在识别系统边界的时候应注意:应从用户视角出发,不受系统实现影响;主要是为了区分内部逻辑文件(ILF)和外部接口文件(EIF);事务功能应穿越识别的系统边界。 3、识别功能点计数项   功能点计数项分为数据功能和交易功能两类。数据功能包括内部逻辑文件(ILF)、外部接口文件(EIF);交易功能包括外部输入(EI)、外部输出(EO)、外部查询(EQ)。   数据功能是系统提供给用户的满足产品内部和外部数据需求的功能,即本系统管理或使用那些业务数据(业务对象),如“客户信息”“账户交易记录”等。   内部逻辑文件或外部接口文件所指的“文件”不是传统数据处理意义上的文件,而是指一组客户可识别的、逻辑上相互关联的数据或者控制信息。因此,这些文件和物理上的数据集合(如数据库表)没有必然的对应关系。   交易功能是系统提供给用户的处理数据的功能,即本系统如何处理和使用那些业务数据(业务对象),如“转账”“修改黑名单生成规则”“查询交易记录”等。   交易功能又称为基本过程,是用户可识别的,业务上的一组原子操作,可能由多个处理逻辑构成。例如,“添加柜员信息”这个基本过程可能包含“信息校验”“修改确认”“修改结果反馈”等一系列处理逻辑。 4、计算未调整的功能点数   a、采用预估功能点进行计数,计算公式如下:          FP=35*ILF+15*EIF   ——FP:未调整的功能点数,单位为功能点;   ——ILF:内部逻辑文件的数量;   ——EIF:外部接口文件的数量。   b、采用估算功能点进行计数,计算公式如下:          FP=10*ILF+7*EIF+4*EI+5*EO+4*EQ   ——FP:未调整的功能点数,单位为功能点;   ——ILF:内部逻辑文件的数量;   ——EIF:外部接口文件的数量;   ——EI:外部输入的数量;   ——EO:外部输出的数量;   ——EQ:外部查询的数量。 5、计算调整后的功能点数   根据不同的规模测算阶段,需要考虑隐含需求及需求变更对规模的影响,因此,需要根据规模计数时机进行规模调整。调整后的功能点数(AFP),计算公式如下:          AFP=FP*CF   ——AFP:调整后的功能点数,单位为功能点;   ——FP:未调整的功能点数,单位为功能点;   ——CF:规模变更调整因子,依据行业数据,项目估算早期(如概预算阶段)通常取值为1.5;项目估算中期(如招投评标、项目立项、技术方案阶段)通常取值为1.26;项目估算中后期(如需求分析完成及后评价)通常取值为1.0。   了解快速功能点方法度量的规则及过程,有助于提高使用快速功能点方法进行软件造价、软件成本估算、软件成本费用测算时的工作效率。

    00

    工地车辆未冲洗识别抓拍系统 智慧工地

    工地车辆未冲洗识别抓拍系统 智慧工地通过出入口摄像头,工地车辆未冲洗识别抓拍系统 智慧工地可以对每辆要出施工工地的工程车辆的清洗实现自动识别判定。如果工地车辆未冲洗识别抓拍系统 智慧工地识别到车辆冲洗不合格,工地车辆未冲洗识别抓拍系统 智慧工地就会自动进行抓拍并将违规车辆信息回传给智慧工地系统平台。目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。

    06
    领券