工作中的难点问题正是我们知识技术栈全谱查漏补缺的最佳机遇,有问题不可怕,all in、死磕就完事了,哈哈哈~
Linux:进程间通信(二.共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
学习软件工程规范的时候,我们知道瀑布模型,在整个项目开发过程分为多个阶段,上一阶段的输出作为下一阶段的输入。各个阶段的具体内容如下图所示
信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施,是可以用来保证两个或多个关键代码段不被并发调用。在进入一个关键代码段之前,线程必须获取一个信号量;一旦该关键代码段完成了,那么该线程必须释放信号量。其它想进入该关键代码段的线程必须等待直到第一个线程释放信号量。
还可以查看对应的pid文件,可以看到对应的master进程的进程编号,表示服务启动了
在货船中,为了防止漏水和火灾的扩散,一般会将货仓进行分割,避免了一个货仓出事导致整艘船沉没的悲剧。同样的,在Hystrix中,也采用了这样的舱壁模式,将系统中的服务提供者隔离起来,一个服务提供者延迟升
每个进程的用户地址空间都是独立的,一般而言是不能互相访问的,但内核空间是每个进程都共享的, 所以进程之间要通信必须通过内核。
进程A可以通过消息队列的系统调用接口,把自己的数据块链入队列中 进程B也可以把自己的数据块链入队列中 这个队列就是一种共享资源
提示segmet的含义是get a semaphore set identifier,即获取一个信号量集标识符。说明此错误可能和未获得信号量有关,No space left on device不是指存储空间,而是指信号量资源。
在进程通信应用中会用到共享内存,这就涉及到了IPC,与IPC相关的命令包括:ipcs、ipcrm(释放IPC)。IPCS命令是Linux下显示进程间通信设施状态的工具。我们知道,系统进行进程间通信(IPC)的时候,可用的方式包括信号量、共享内存、消息队列、管道、信号(signal)、套接字等形式[2]。使用IPCS可以查看共享内存、信号量、消息队列的状态。
Semaphore 使用纯粹的内核时间(kernel-time)方式(等待时间很短),并且支持在不同的进程间同步线程(像Mutex)。
ipcrm命令用于删除指定ID的IPC(Inter-Process Communication,进程间通信)对象,包括消息队列(message queue)、共享内存(shared memory)和信号量(semaphore),同时将与IPC对象关联的数据一并删除,只有超级用户或IPC对象创建者能够删除。
本文主要基于 Hystrix 1.5.X 版本 1. 概述 2. #applyHystrixSemantics(...) 3. TryableSemaphore 4. #executeCommandAndObserve(...) 5. #executeCommandWithSpecifiedIsolation(...) 6. #getUserExecutionObservable(...) 7. #getExecutionObservable() 8. CommandState 9. ThreadStat
FreeRTOS 从版本 V8.2.0开始提供任务通知这个功能,每个任务都有一个32位的通知值。按照 FreeRTOS 官方的说法,使用消息通知比通过二进制信号量方式解除阻塞任务快 45%, 并且更加省内存(无需创建队列)。
在上一篇文章中,我们探讨了进程间通信的三种常见机制:管道、消息队列和共享内存。我们了解到,这些机制各有其特点和适用场景,可以根据实际需求选择合适的机制进行进程间通信。然而,进程间通信并不仅限于这三种方式。
我正在学习 Zephyr,一个很可能会用到很多物联网设备上的操作系统,如果你也感兴趣,可点此查看帖子zephyr学习笔记汇总。
描述:hwinfo 意即硬件信息工具,是另外一种很好的实用工具。它被用来检测系统中已存在的硬件,并且以可读的格式显示各种硬件组件的细节信息。 系统发行版安装 hwinfo:
在 System V 通信标准中,还有一种通信方式:消息队列,以及一种实现互斥的工具:信号量;随着时代的发展,这些陈旧的标准都已经较少使用了,但作为 IPC 中的经典知识,我们可以对其做一个简单了解,扩展 IPC 的知识栈,尤其是 信号量,可以通过它,为以后多线程学习中 POSIX 信号量的学习做铺垫
突然间发现zabbix 挂了,咋发现的呢?报警的世界突然安静了,你就会觉得不妥了。这是运维人员的通病,有报警嫌烦,没报警心里会不安。 1,图形界面上确实显示zabbix server is not running 2,排查zabbix server 日志 tail /var/log/zabbix/zabbix_server.log 发现有如下报警:
信号量(semaphores)是20世纪60年代中期Edgser Dijkstra发明的。使用信号量的最初目的是为了给共享资源建立一个标志,该标志表示该共享资源被占用情况。这样,当一个任务在访问共享资源之前,就可以先对这个标志进行查询,从而在了解资源被占用的情况之后,再来决定自己的行为。
在Unix或Linux下,由于进程异常中断,导致共享内存、信号量,队列等共享信息没有干净地清除或释放而引起一些问题,例如数据库不能重新启动或不能登录数据库。此时,就要用到ipcs和ipcrm命令了。
进程间通信有如下的目的:1、数据传输,一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几M之间;2、共享数据,多个进程想要操作共享数据,一个进程对数据的修改,其他进程应该立刻看到;3、通知事件,一个进程需要向另一个或一组进程发送消息,通知它们发生了某件事情;4、资源共享,多个进程之间共享同样的资源。为了做到这一点,需要内核提供锁和同步机制;5、进程控制,有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。
要想一个系统不崩溃,性能还得好,同步技术是非常关键的。但是,完全避免竞态条件几乎是难于上青天。因为它要求对内核各个功能模块之间的交互得有一个清晰深刻的理解。下面我们看一下Linux内核中一些具体保护数据访问的示例,加深对其理解,甚至可以在自己的内核设计上借鉴一下。
ipcs命令用于报告Linux中进程间通信设施的状态,显示的信息包括消息列表、共享内存和信号量的信息。可以帮助开发人员定位进程间通信中出现的问题。
今天要分享的是Linux进程的同步机制,包括管道和IPC。之前学习的信号也有控制进程同步的作用,但是信号仅仅传输很少的信息,而且系统开销大,所以这里再介绍几种其他的进程同步机制。在之前的一篇文章中有提到相关内容,但是当时没有详细展开,可以回顾一下:Linux笔记(10)| 进程概述。
匿名管道通信 认识管道 匿名管道 匿名管道测试 管道的四种情况 管道的五种特性 管道的读写规则
在微服务架构中,我们将系统拆分成了很多服务单元,各单元的应用间通过服务注册与订阅的方式互相依赖。由于每个单元都在不同的进程中运行,依赖通过远程调用的方式执行,这样就有可能因为网络原因或是依赖服务自身间题出现调用故障或延迟,而这些问题会直接导致调用方的对外服务也出现延迟,若此时调用方的请求不断增加,最后就会因等待出现故障的依赖方响应形成任务积压,最终导致自身服务的瘫痪。
通过之前的学习,我们大致可以感受出来,共享内存,消息队列和信号量在使用的时候是有很多共性的。它们三个的接口,包括接口中传的参数有的都有很大的相似度。其实,共享内存,消息队列和信号量是操作系统针对本地进程间通信特意设计出来的system V版本的进程间通信(IPC,Inter Process Communication)技术。共享内存,消息队列和信号量所管理的资源称为IPC资源。在操作系统底层,共享内存,消息队列和信号量都是有相对应的结构体将它们维护起来的。
分布式系统环境下,服务间类似依赖非常常见,一个业务调用通常依赖多个基础服务。如下图,对于同步调用,当库存服务不可用时,商品服务请求线程被阻塞,当有大批量请求调用库存服务时,最终可能导致整个商品服务资源耗尽,无法继续对外提供服务。并且这种不可用可能沿请求调用链向上传递,这种现象被称为雪崩效应。
分布式系统环境下,服务间依赖非常常见,一个业务调用通常依赖多个基础服务。对于同步调用,当某服务不可用时,服务请求线程被阻塞,当有大批量请求调用该不可用服务时,最终可能导致整个系统服务资源耗尽,无法继续对外提供服务。并且这种不可用会沿请求调用链向上传递,这种现象被称为雪崩效应。
上篇讲解了如何用 Redis 实现分布式锁的五种方案,但我们还是有更优的王者方案,就是用 Redisson。
(1)学会使用 VC 编写基本的 Win32 Consol Application(控制台应用程序)。 (2)通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解 Windows 进程的“一生”。 (3)通过阅读和分析实验程序,学习创建进程、观察进程、终止进程以及父子进程同步的基本程序设计方法。
该函数的每次都用都返回两次,在父进程中返回的是子进程的PID,在子进程中返回的是0.该返回值是兴许代码推断当前进程是父进程还是子进程的根据。
服务降级是从整个系统的负荷情况出发和考虑的,对某些负荷会比较高的情况,为了预防某些功能(业务场景)出现负荷过载或者响应慢的情况,在其内部暂时舍弃对一些非核心的接口和数据的请求,而直接返回一个提前准备好的fallback(退路)错误处理信息。这样虽然提供的是一个有损的服务,但却保证了整个系统的稳定性和可用性。
本文主要介绍进程间通信(IPC,Inter Process Communication)的一些方式,包括:
管道是Unix系统IPC最古老的方式。管道有下列两种局限性: (1) 历史上,它们是半双工的(即数据只能在一个方向上流动)。 (2) 它们只能在具有公共祖先的进程之间使用。通常,一个管道由一个进程创建,然后该进程调用fork,此后父子进程就可以应用该管道
两个进程的PCB创建虚拟地址空间然后映射到物理内存中,每个进程因为是独立的,所以在物理内存中的地址也不同。 那么共享内存是怎么做到的呢? 首先先在物理内存中申请一块内存。 然后讲这块内存通过页表映射分别映射到这两个进程的虚拟地址空间内,让这两个进程都能看到这块内存。(这里也称为进程和共享内存挂接) 最后如果不想通信了:
管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
当程序被停住了,你可以用continue命令恢复程序的运行直到程序结束,或下一个断点到来。也可以使用step或next命令单步跟踪程序。
如果你之前是在用 Redis 的话,那使用 Redisson 的话将会事半功倍,Redisson 提供了使用 Redis的最简单和最便捷的方法。
信号量的概念参见这里。 与消息队列和共享内存一样,信号量集也有自己的数据结构: struct semid_ds { struct ipc_perm sem_perm; /* Ownership a
初学操作系统的时候,我就一直懵逼,为啥进程同步与互斥机制里有信号量机制,进程通信里又有信号量机制,然后你再看网络上的各种面试题汇总或者博客,你会发现很多都是千篇一律的进程通信机制有哪些?进程同步与互斥机制鲜有人问津。看多了我都想把 CSDN 屏了.....,最后知道真相的我只想说为啥不能一篇博客把东西写清楚,没头没尾真的浪费时间。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://louluan.blog.csdn.net/article/details/90494911
在系统中,随着我们的进程越来越多,难免不同进程之间要互相传输一些数据,那么这个时候该怎么办呢?
Semaphore,如今通常被翻译为"信号量",过去也曾被翻译为"信号灯",因为类似于现实生活中的红绿灯,车辆是否能通行取决于是否是绿灯。同样,在编程世界中,线程是否能执行取决于信号量是否允许。
笔者将《unix环境高级编程》主要内容总结为三篇:文件篇,进程篇,高级io和进程间通信三大板块。本文是unix环境高级编程系列文章第三篇:高级IO和进程间通信篇。该篇主要包括:
synchronized是互斥锁,在这里主要考虑的是线程安全的问题,使用这个关键字,可以将一段代码限制在一个线程内使用,如果有一个线程正在使用这块资源,那么别的线程想要使用的时候就必须等待这快线程执行完毕!
领取专属 10元无门槛券
手把手带您无忧上云