首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用python实现两个文件间原子距离的成对计算

原子距离的成对计算是指计算两个文件中的原子之间的距离。在这个问题中,我们可以使用Python来实现这个功能。

首先,我们需要读取两个文件中的原子坐标数据。假设文件1和文件2分别为file1.txt和file2.txt,文件中的原子坐标数据格式为每行一个原子,包括原子类型和三维坐标(x, y, z)。

代码语言:txt
复制
def read_coordinates(filename):
    coordinates = []
    with open(filename, 'r') as file:
        for line in file:
            atom_type, x, y, z = line.split()
            coordinates.append((atom_type, float(x), float(y), float(z)))
    return coordinates

file1_coordinates = read_coordinates('file1.txt')
file2_coordinates = read_coordinates('file2.txt')

接下来,我们可以计算两个文件中所有原子之间的距离,并将结果保存在一个距离矩阵中。

代码语言:txt
复制
import numpy as np

def calculate_distances(coordinates1, coordinates2):
    distances = np.zeros((len(coordinates1), len(coordinates2)))
    for i, atom1 in enumerate(coordinates1):
        for j, atom2 in enumerate(coordinates2):
            distance = np.sqrt((atom1[1] - atom2[1])**2 + (atom1[2] - atom2[2])**2 + (atom1[3] - atom2[3])**2)
            distances[i, j] = distance
    return distances

distances_matrix = calculate_distances(file1_coordinates, file2_coordinates)

最后,我们可以输出距离矩阵,以便进一步分析或处理。

代码语言:txt
复制
print(distances_matrix)

这样,我们就用Python实现了两个文件间原子距离的成对计算。

对于这个问题,可以使用腾讯云的云原生产品来进行部署和运行。云原生是一种基于容器、微服务和DevOps的应用开发和部署方式,可以提供高可用性、弹性伸缩和灵活性等优势。

推荐的腾讯云相关产品是腾讯云容器服务(Tencent Kubernetes Engine,TKE),它是一种高度可扩展的容器管理服务,可以帮助用户快速构建、部署和管理容器化应用。您可以通过以下链接了解更多关于腾讯云容器服务的信息:腾讯云容器服务

请注意,以上答案仅供参考,具体的实现方式和腾讯云产品选择可能需要根据实际需求和情况进行调整。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

AAAI Spring Symposium 2019|CrystalGan:使用生成对抗网络发现晶体结构

今天给大家介绍巴黎东大和索邦大学的Asma Nouira等人在AAAI Spring Symposium 2019上分享的文章“CrystalGAN: Learning to Discover Crystallographic Structures with Generative Adversarial Networks”。作者在文章中提出使用生成对抗网络(generative adversarial networks,GAN)可以高效地生成新的数据,因此可以应用于生成新的晶体结构数据。但在材料科学领域,需要生成相对于样本复杂度更高阶的数据,一般的生成对抗网络难以满足这一要求。本文提出的CrystalGan可以生成更高复杂度的新的稳定的晶体结构。本文提出的这一种高效的方法在新型氢化物发现等实际问题中可能会有比较深入的应用。

01
  • KDD2021 | 用于预测蛋白质-配体结合亲和力的图神经网络

    本文介绍由中国科学技术大学和百度商业智能实验室等机构的研究人员合作发表于KDD 2021的研究成果:作者提出了一个基于图神经网络的模型SIGN(structure-aware interactive graph neural network),通过利用原子间的细粒度结构和相互作用信息来学习蛋白质-配体复合物的表征,从而更好地进行结合亲和力预测。SIGN由两部分组成:极坐标启发的图注意力层(PGAL)和成对相互作用池化(PiPool)。PGAL用来整合原子之间的距离和角度信息,进行三维空间结构建模。PiPool用来将蛋白质和配体之间的远程相互作用纳入模型中。在两个基准上的实验结果验证了SIGN的优越性。

    03

    AlphaFold3及其与AlphaFold2相比的改进

    蛋白质结构预测是生物化学中最重要的挑战之一。高精度的蛋白质结构对于药物发现至关重要。蛋白质结构预测始于20世纪50年代,随着计算方法和对蛋白质结构的认识不断增长。最初主要采用基于物理的方法和理论模型。当时的计算能力有限,这些模型往往难以成功地预测大多数蛋白质的结构。蛋白质结构模型的下一个发展阶段是同源建模,出现在20世纪70年代。这些模型依赖于同源序列具有相似结构的原理。通过将目标序列与已知结构的模板序列进行多序列比对,首次成功地确定了以前未解决的序列的结构。然而,这些模型的分辨率仍然有限。20世纪80年代出现了从头开始的方法,带来了下一个分辨率提升。这些方法应用了基于物理的技术和优化算法。结合计算技术的进步,这导致了蛋白质结构预测的显著改进。为了对所有这些新方法进行基准测试,从90年代初开始了蛋白质结构预测技术评估的关键阶段(CASP)系列活动。近年来,机器学习和深度学习技术已经越来越多地集成到蛋白质结构预测方法中,尤其是自2007年以来使用长短期记忆(LSTM)以来。

    01

    一种用Gaussian 16中的GIC功能实现同时扫描多个坐标的方法

    势能面扫描是我们用Gaussian常做的计算,一般可以分为刚性扫描和柔性扫描。如果在柔性扫描中给定两个坐标,那么我们将会得到二维势能面。但是有时候我们只希望两个坐标同时变化得到一条势能曲线,这可以通过使用Gaussian中的GIC(广义内坐标)实现。本公众号之前也给出了一个可行的解决方案,见《在Gaussian16中同时扫描两个反应坐标》。但是之前方案的缺点是使用了Link1,在用GaussView打开输出文件时不能很方便地显示能量的变化趋势,这在找能量极大,极小点时会带来困难。因此这里给出了一个新的方案,不使用Link1,让势能曲线可以直观地显示出来。

    03

    ICLR 2022 | 三维分子图的球形信息传递

    今天给大家介绍的是ICLR 2022 Poster的文章《Spherical Message Passing for 3D Molecular Graphs》。作者在此工作中考虑了三维分子图的表示学习,其中每个原子与三维的空间位置相关联。这是一个尚未得到充分探索的研究领域,目前还缺乏一个有效的信息传递框架。在这项工作中,作者在球坐标系(SCS)中进行了分析,以完整地识别三维图结构。基于此观察,作者提出了球形信息传递(SMP)作为一种新的和强大的三维分子学习方案。SMP显著降低了训练的复杂性,使其能够在大规模分子上有效地执行。此外,SMP能够区分几乎所有的分子结构,而未覆盖的案例在实际中可能并不存在。基于有意义的基于物理的三维信息表示,作者进一步提出了用于三维分子学习的SphereNet。实验结果表明,在SphereNet中使用有意义的三维信息可以显著提高预测任务的性能。结果还证明了SpherNet在可靠性、效率方面的优势。

    01

    Chemical Science | SDEGen:基于随机微分方程的构象生成模型

    本文介绍一篇来自浙江大学侯廷军教授、康玉副教授和碳硅智慧联合发表在Chemical Science的论文《SDEGen: Learning to Evolve Molecular Conformations from Thermodynamic Noise for Conformation Generation》。该论文提出了一种将分子力学当中的随机动力学系统和深度学习当中的概率模型相结合的小分子三维构象生成模型:SDEGen。作者采用随机微分方程(Stochastic Differential Equation, SDE)模拟分子构象从热噪声分布到热平衡分布的过程,联合概率深度学习的最新DDIM(Denoising Diffusion Implicit Models)模型,不仅提高了模型生成构象的效率,并且在多项评测任务(包括构象生成质量、原子间距离分布和构象簇的热力学性质)上实现了精度的提升。如在构象生成质量上,其多样性指标优于传统方法22%,准确性指标优于传统方法40%;在热力学性质预测方面,将传统方法的精度提升了一个数量级,与量化计算的结果误差缩小至~2kJ/mol。除此之外,这篇文章还引入了晶体构象的比对实验和势能面分布实验,为构象生成任务的评测提供了更多维及更物理的视角。大量的实验表明,SDEGen不仅可以搜索到小分子晶体构象所在的势能面的势阱当中,还可以搜索到完整势能面上多个局域优势构象。同时,SDEGen模型计算效率极高,在分子对接、药效团识别、定量构效关系等药物设计任务中具有广泛的应用前景。

    03

    arXiv | 操作符自编码器:学习编码分子图上的物理操作

    今天给大家介绍的是发表在arXiv上一项有关分子动力学内容的工作,文章标题为Operator Autoencoders: Learning Physical Operations on Encoded Molecular Graphs,作者分别是来自波特兰州立大学的Willis Hoke, 华盛顿大学的Daniel Shea以及美国兰利研究中心的Stephen Casey. 在这项工作中,作者开发了一个用于建立分子动力学模拟的时间序列体积数据图结构表示的流程。随后,作者训练了一个自编码器,以找到一个潜在空间的非线性映射。在该空间中,通过应用与自编码器串联训练的线性算子,可以预测未来的时间步长。同时,作者指出增加自编码器输出的维数可以提高物理时间步算子的精度。

    05

    基于可解释的异质相互作用图神经网络的蛋白质-配体亲和力预测

    今天为大家介绍的是来自北京大学信息工程学院、AI4S平台中心主任陈语谦教授团队发表在人工智能旗舰期刊IEEE Transactions on Pattern Analysis and Machine Intelligence(IF=23.6)的论文,博士生杨梓铎为第一作者。该论文从归纳偏好的角度探讨了深度学习模型在蛋白质-配体亲和力(Protein-Ligand Binding Affinity, PLA)预测任务中的泛化能力和可解释性。归纳偏好是指在深度学习模型中为了更好地进行学习和泛化而引入的假设或偏好。归纳偏好通过限制模型的假设空间,使其在有限的数据上更容易找到合适的模式,从而提高模型的泛化性能。模型的泛化能力及可解释性,往往取决于所使用的归纳偏好在多大程度上能够准确描述待解决的任务。因此,在PLA预测任务中,所采用的归纳偏好应符合物理化学规则,以更好地描述蛋白质-配体间的相互作用,从而提高模型的泛化能力和可解释性。

    01
    领券