首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python之numpy模块的添加及矩阵乘法的维数问题

参考链接: Python程序添加两个矩阵 在Python中,numpy 模块是需要自己安装的,在安装编程软件时,默认安装了pip,因此我们可以用pip命令来安装  numpy模块。         ...这里来说一下使用矩阵乘法的问题:在numpy模块中矩阵的乘法用dot()函数,但是要注意维数,还有就是要细心。 ...“l1=nonlin(np.dot(l0,syn0))”,这里提示(4,)与(9,1)不对齐,然后打印一下矩阵l0和syn0  的维数,即将命令“print(l0.shape)”和“print(syn0....shape)”放在“l1=nonlin(np.dot(l0,syn0))”的前一行,如下图所示:  发现矩阵l0和syn0的维数分别为(4,)与(9,1),若矩阵l0为(4,9),矩阵乘法才能计算。...这里的矩阵l0就是输入,即为x。  经过查找发现输入的第一行数据中,有一个数据错将小数点输成逗号所致。

89310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    矩阵乘法的java实现

    文章目录 1、算法思想 2、代码实现 1、算法思想 最近老是碰到迭代问题,小数太多手算又算不过来,写个矩阵乘法辅助一下吧。 有两个矩阵A和B,计算矩阵A与B相乘之后的结果C。...A的列数必须等于B的行数 用矩阵A的第i行的值分别乘以矩阵B的第J列,然后将结果相加,就得到C[i][j]。...矩阵A的行等于C的行,矩阵B的列等于C的列,这两个数值用来控制循环的次数,但是每一步中需要把行和列中对应的乘机求和,所以再加一个内循环控制乘法求和就行。...下面我们进行矩阵乘法的测试 A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\\ 1 & 1& 1 \end{bmatrix} B= \...[lineLength][listLength];//相乘的结果矩阵 //乘法 for(int i=0;i<lineLength;i++){ for

    1.9K20

    详解Python中的算术乘法、数组乘法与矩阵乘法

    (1)算术乘法,整数、实数、复数、高精度实数之间的乘法。 ? (2)列表、元组、字符串这几种类型的对象与整数之间的乘法,表示对列表、元组或字符串进行重复,返回新列表、元组、字符串。 ?...数组与标量相乘,等价于乘法运算符或numpy.multiply()函数: ? 如果两个数组是长度相同的一维数组,计算结果为两个向量的内积: ?...如果两个数组是形状分别为(m,n)和(n,)的二维数组和一维数组,计算结果为二维数组每行分别与一维数组的内积组成的数组: ?...如果两个数组是形状分别为(m,k)和(k,n)的二维数组,表示两个矩阵相乘,结果为(m,n)的二维数组,此时一般使用等价的矩阵乘法运算符@或者numpy的函数matmul(): ?...在这种情况下,第一个数组的最后一个维度和第二个数组的倒数第二个维度将会消失,如下图所示,划红线的维度消失: ? 6)numpy矩阵与矩阵相乘时,运算符*和@功能相同,都表示线性代数里的矩阵乘法。

    9.9K30

    算法系列-----矩阵(四)-------------矩阵的乘法

    (double)的一维数组,b是浮点数; * @return 返回值是一个浮点型一维数组(列向量a乘以数b的结果) */ public static double[] multi(double...; for (int i = 0; i < hang; i++) { result[i] = a[i] * b; } return result; } 行向量乘以列向量: 他们的结果作为向量乘法结果矩阵的某一个元素...: /** * 矩阵相乘的函数 * * @param args * 参数a,b是两个浮点型(double)的二维数组 * @return 返回值是一个浮点型二维数组...: /** * 矩阵相乘的函数 * * @param args * 参数a是个浮点型(double)的二维数组,a是一维数组 * @return 返回值是一个浮点型二维数组...b.length; k++) { sum += a[i][k] * b[k]; } result[i] = sum; } return result; } 他有个条件就是一维的长度不能大于列数

    59730

    疯子的算法总结(五) 矩阵乘法 (矩阵快速幂)

    学过线性代数的都知道矩阵的乘法,矩阵乘法条件第为一个矩阵的行数等与第二个矩阵的列数,乘法为第一个矩阵的第一行乘以第二个矩阵的第一列的对应元素的和作为结果矩阵的第一行第一列的元素。...(详解参见线性代数) 于是我们可以写出矩阵惩乘法的代码 struct JZ{ int m[maxn][maxn]; }; JZ muti(JZ a,JZ b) { JZ temp;...我们参考快速幂,将数字的乘法换成矩阵的乘法,可以得出矩阵快速幂的代码; #include using namespace std; const int MOD=1e8+5;...const int maxn=2; //定义方阵的阶数 struct JZ{ int m[maxn][maxn]; };//定义maxn阶方阵 JZ muti(JZ a,JZ b,int mod...证明: F矩阵乘以A矩阵代表将右侧元素给左侧,右侧元素等于右侧加左侧。矩阵的乘法满足结合律,所以FXX*……N……X = F (XXX……*X) 所以定义不同的F矩阵可以得到不同的斐波那契数列。

    77740

    numpy基础属性方法随机整理(8):矩阵乘法 及 对应元素相乘的矩阵乘法

    矩阵运算基础知识参考:矩阵的运算及其规则注意区分数组和矩阵的乘法运算表示方法(详见第三点代码)1) matrix multiplication矩阵乘法: (m,n) x (n,p) --> (m,p)...# 矩阵乘法运算前提:矩阵1的列=矩阵2的行 3种用法: np.dot(matrix_a, matrix_b) == matrix_a @ matrix_b == matrix_a * matrix_b2...'> '''# 1) matrix multiplication矩阵乘法: (m,n) x (n,p) --> (m,...p) # 矩阵乘法运算前提:矩阵1的列=矩阵2的行3种用法: np.dot(matrix_a, matrix_b) == matrix_a @ matrix_b == matrix_a * matrix_b...(matrix_c, matrix_d) # 对应位置元素相乘print(method_1)#[[ 5 12 26]# [ 21 32 725]# [143 168 345]]3) 矩阵乘法和数组乘法

    2K30

    稀疏矩阵之 toarray 方法和 todense 方法

    我们都知道矩阵的运算无非就是加法、减法、数乘、转置、乘法、求逆、求幂、哈达玛乘积和克罗内克乘积。...其中,加法、减法、乘法、哈达玛乘积和克罗内克乘积是二元运算,两个操作变量都是矩阵;数乘运算也是二元运算,只不过它的两个操作变量是一个数和一个矩阵;转置、求逆和求幂都是一元运算,操作变量只有一个矩阵。...在这些运算中,我们需要注意的是加法、减法和哈达玛乘积必须确保两个矩阵形状相同;乘法运算必须确保第一个矩阵的列数和第二个矩阵的行数必须完全相等;求逆运算必须确保矩阵是一个可逆方阵;求幂运算,求的是方阵的幂...,二维数组的减法相当于矩阵的减法,一个数乘上一个二维数组相当于一个数乘上一个矩阵,二维数组的转置相当于矩阵的转置。...但是,第一,二维数组的乘法和矩阵的乘法并不能划等号,二维数组的乘法是把两个相同形状的二维数组的对应位置的元素相乘得到一个新数组,和矩阵的乘法并不能画上等号,如果把二维数组看作是矩阵,这就相当于两个矩阵做哈达玛乘积

    3.9K31

    对矩阵乘法的深入理解

    本文是对《机器学习数学基础》第2章2.1.5节矩阵乘法内容的补充和扩展。通过本节内容,在原书简要介绍矩阵乘法的基础上,能够更全面、深入理解矩阵乘法的含义。...在2.1.5节中,给出了矩阵乘法最基本的定义,令矩阵 和矩阵 相乘,定义乘积 中 为: 这种定义的方法便于手工计算——手工计算,在计算机流行的现在,并非特别重要。...所以,现在更应该深入理解矩阵乘法的数学含义,所以,再拓展如下内容。 以列向量作为计算单元 定义 以列向量表示矩阵 ,设一维列向量 。...设线性变换 的矩阵为 阶矩阵 ,线性变换 的矩阵为 解矩阵 ,则: 所以,符合线性变换 的矩阵有 和 来决定。 若定义: ,即矩阵乘法。...此处不单独演示分块矩阵的计算。 在以上几种对矩阵乘法的理解中,其本质是采用不同的计算单元。这有助于我们将其他有关概念综合起来,从而加深对矩阵乘法的含义理解。

    1.7K20

    Mapreduce实现矩阵乘法的算法思路

    大数据计算中经常会遇到矩阵乘法计算问题,所以Mapreduce实现矩阵乘法是重要的基础知识,下文我尽量用通俗的语言描述该算法。...1.首先回顾矩阵乘法基础 矩阵A和B可以相乘的前提是,A的列数和B的行数相同,因为乘法结果的矩阵C中每一个元素Cij,是A的第i行和B的第j列做点积运算的结果,参见下图: 2.进入正题 在了解了矩阵乘法规则后...通过分析上述矩阵乘法过程我们可以发现,其实C矩阵的每一个元素的计算过程都是相互独立的,比如C11和C21的计算不会相互影响,可以同时进行。...这个所谓的“归到一组”,结合MR模型和矩阵乘法规则,其实就是Map将这些元素输出为相同的Key---C矩阵中元素的坐标,然后通过Shuffle就能把所有相同Key的元素输入到Reduce中,由Reduce...注意,这里是一对多的,每个A或者B的元素都会参与多个C元素的计算,如果不明白请再看第一遍矩阵乘法规则。

    1.4K20

    PyTorch入门笔记-常见的矩阵乘法

    torch.matmul 函数功能强大,虽然可以使用其重载的运算符 @,但是使用起来比较麻烦,并且在实际使用场景中,常用的矩阵乘积运算就那么几种。...为了方便使用这些常用的矩阵乘积运算,PyTorch 提供了一些更为方便的函数。...二维矩阵乘法 神经网络中包含大量的 2D 张量矩阵乘法运算,而使用 torch.matmul 函数比较复杂,因此 PyTorch 提供了更为简单方便的 torch.mm(input, other, out...torch.matmul 函数支持广播,主要指的是当参与矩阵乘积运算的两个张量中其中有一个是 1D 张量,torch.matmul 函数会将其广播成 2D 张量参与运算,最后将广播添加的维度删除作为最终...批量矩阵乘法 image.png ? 同理,由于 torch.bmm 函数不支持广播,相对应的输入的两个张量必须为 3D。

    1.7K20

    大佬是怎么优雅实现矩阵乘法的?

    内容很简单,就是在CPU上实现单精度矩阵乘法。看了一下,结果非常好:CPU的利用率很高。更可贵的是核心代码只有很短不到200行。 之前总觉得自己很了解高性能计算,无外乎就是“局部性+向量”随便搞一搞。...所以我们的问题如下:输入是棕色矩阵A和蓝色矩阵B,求红色矩阵C ? 我们知道一般矩阵乘法就是一堆循环的嵌套,这个也不例外。在代码里,最外层结果是输出矩阵的行遍历。...现在我们把它们都利用上:先来思考下我们能不能直接在A矩阵用ymm?如果用的话,那么我们会把A矩阵一行的连续数据存到一起。这些数据会和谁运算呢?是B的一列数据,也就是图中黑色的部分。...还剩一个,我们先把A的第一行第一列的数字读出来,把它复制8份拓展成一个ymm,然后和这三个B的ymm作element-wise的乘法,把结果累加到ymm0~ymm2里。 现在发现这个算法的精妙了么?...对的!他正好把16个ymm都用上了,一个不多一个不少 ? 之后我们该干嘛?其实有很多选择,比如我们把ymm12~ymm14往下移动一行,和第一行第二列的数字做乘法,如下图: ?

    83120

    矩阵乘法加速器的设计框架

    矩阵乘法和硬件模型 一般来说,矩阵乘法加速器中需要加速的计算可表示为 \[ C = A\times B + C \] 其中 (Ain R^{mtimes k}) , (Bin R^{ktimes n}...矩阵乘法加速器,一般至少包括计算单元,缓存(SRAM等构成)和内存(譬如DDR等)。其中缓存的读写速率较高,可以和计算单元的运算速度相匹配,但容量较小;内存的容量相对缓存较大,但读写速率较低。 ?...带宽优化的矩阵乘法加速器设计 和一般的处理器相比,特定的加速器可以设计数量巨大的计算单元(譬如Google TPU V1设计了65536个乘法器);但是DDR的带宽的提升却是有限的。...矩阵乘法加速器的设计目的一般是为了加速大规模的矩阵乘法计算,为了简化分析过程,假设矩阵 (A,B,C) 的大小 (S_A,S_B,S_C) 均远大于 (M) ,即计算过程中每次只能在缓存中存放一部分数据...计算优化的矩阵乘法加速器设计 依据第二节的结果,每次计算的子矩阵为 \[C_{sub}^{p\times q} += A_{sub}^{p\times 1} + B_{sub}^{1\times q}

    3.2K10
    领券