首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ICML 2022 | LIMO: 一种快速生成靶向分子的新方法

    今天给大家介绍来自美国加州大学团队发表在ICML2022上的文章。该论文提出了一种能够加快分子生成速度的LIMO模型。LIMO采用了变异自动编码器生成分子的的潜在表示,并且通过网络进行分子的属性预测,以实现更快的基于梯度的分子属性反向优化。综合实验表明,LIMO在基准任务上表现出竞争性,在生成具有高结合力的类药化合物的新任务上明显优于当前最先进的技术,并对两个蛋白质目标的结合力达到纳摩尔范围。作者利用更精确的基于分子动力学的绝对结合自由能计算,展示了生成的分子基于对接的结果,并表明模型生成的一个类药物化合物对人类雌激素受体的预测K D值(结合亲和力的度量值)远超过了早期的典型候选药物和大多数FDA批准的药物对其各自目标的亲和力。

    03

    实现AGI,强化学习就够了?Sutton、Silver师徒联手:奖励机制足够实现各种目标

    机器之心报道 编辑:小舟、陈萍 通用人工智能,用强化学习的奖励机制就能实现吗? 几十年来,在人工智能领域,计算机科学家设计并开发了各种复杂的机制和技术,以复现视觉、语言、推理、运动技能等智能能力。尽管这些努力使人工智能系统在有限的环境中能够有效地解决特定的问题,但却尚未开发出与人类和动物一般的智能系统。 人们把具备与人类同等智慧、或超越人类的人工智能称为通用人工智能(AGI)。这种系统被认为可以执行人类能够执行的任何智能任务,它是人工智能领域主要研究目标之一。关于通用人工智能的探索正在不断发展。近日强化学习

    01

    系统比较RL与AIF

    主动推理是一种建模生物和人工智能代理行为的概率框架,源于最小化自由能的原则。近年来,该框架已成功应用于多种旨在最大化奖励的情境中,提供了与替代方法相媲美甚至有时更好的性能。在本文中,我们通过展示主动推理代理如何以及何时执行最大化奖励的最优操作,澄清了奖励最大化与主动推理之间的联系。确切地说,我们展示了在何种条件下主动推理产生贝尔曼方程的最优解,该方程是模型驱动的强化学习和控制的几种方法的基础。在部分观察到的马尔可夫决策过程中,标准的主动推理方案可以产生规划时域为1时的贝尔曼最优操作,但不能超越。相反,最近开发的递归主动推理方案(精细推理)可以在任何有限的时间范围内产生贝尔曼最优操作。我们通过讨论主动推理与强化学习之间更广泛的关系,补充了这一分析。

    01
    领券