首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【组合数学】组合恒等式 ( 变上项求和 1 组合恒等式 | 三种组合恒等式证明方法总结 | 证明变上项求和 1 组合恒等式 )

    证明方法 : 之前使用过两种证明方法 , ① 二项式定理 + 求导 , ② 使用现有组合恒等式推导 ; 在这里使用第三类证明方法 , ③ 组合分析 , 组合分析方法是要构造一个组合计数问题 , 左边和右边都是同一个计数问题的解...组合分析方法使用 : 使用组合分析方法证明组合数时 , 先指定集合 , 指定元素 , 指定两个计数问题 , 公式两边是对同一个问题的计数 ; 指定计数问题 : 下面两个计数问题都是同一个问题的计数 ;...① 问题 1 : 等号左侧代表的计数问题 ; ② 问题 2 : 等号右侧代表的计数问题 ; 参考 : 【组合数学】二项式定理与组合恒等式 ( 二项式定理 | 三个组合恒等式 递推式 | 递推式 1 |...指定等号左侧的计数问题 : 等号左侧是 \sum\limits_{l=0}^{n} \dbinom{l}{k} ; 计数问题类型确定 ( 分类选取 ) : 组合式中存在 和号 \sum , 说明该计数问题采用了...在上述两个计数问题都是同一个计数问题 , 都是从 n+1 个元素中选取 k+1 个元素 ;

    1.1K00

    【组合数学】组合恒等式 ( 递推 组合恒等式 | 变下项求和 组合恒等式 简单和 | 变下项求和 组合恒等式 交错和 )

    证明 ( 组合分析 ) : 将等号 左边 和 右边 各看做某个 组合计数问题的解 , ( 1 ) 左侧 组合计数问题 : \sum\limits_{k=0}^{n}\dbinom{n}{k} 可以看做...) ; 这是分类计数 , 最后将所有的类个数相加 , 即包含 0 个元素个数 , 包含 1 个元素子集个数 , \cdots , 包含 n 个元素子集个数 ; ( 2 ) 右侧 组合计数问题...证明 ( 组合分析 ) : 将等号 左边 和 右边 各看做某个 组合计数问题的解 , 完全展开上述组合数 , 这里需要先移项 , 将 k 为奇数的情况下 , (-1)^k 为 -1 , 将这种情况的分项移到右边..., 就有了如下公式 : \sum_{k=0}^{偶数} \dbinom{n}{k} = \sum_{k=1}^{奇数} \dbinom{n}{k} ( 1 ) 左侧 组合计数问题 : \sum_{k...=0}^{偶数} \dbinom{n}{k} 可以看做 n 个元素的所有 偶数个 子集个数 ; ( 2 ) 右侧 组合计数问题 : \sum_{k=1}^{奇数} \dbinom{n}{k}

    1.6K00
    领券