首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

CSS特异性过滤器

CSS特异性过滤器是一种CSS技术,用于在网页上应用特定的滤镜效果。这些滤镜效果可以改变元素的颜色、透明度、亮度、对比度、饱和度等。特异性过滤器可以让你在不同的浏览器和设备上实现一致的视觉效果。

特异性过滤器的语法如下:

代码语言:css
复制
filter:<filter-function> [<filter-function>]*

其中,<filter-function> 是一个或多个滤镜函数,例如:

代码语言:css
复制
filter: brightness(150%) contrast(200%) saturate(150%);

上述代码将元素的亮度提高到150%,对比度提高到200%,饱和度提高到150%。

特异性过滤器的优势在于它可以让你轻松地为元素添加复杂的滤镜效果,而无需使用图像编辑软件或其他工具。此外,特异性过滤器还可以通过CSS动画来实现动态效果。

特异性过滤器的应用场景非常广泛,包括但不限于:

  • 图像编辑:在图像编辑器中,可以使用特异性过滤器来调整图像的颜色、亮度、对比度等。
  • 网页设计:在网页设计中,可以使用特异性过滤器来为元素添加滤镜效果,从而增强视觉效果。
  • 动画效果:在CSS动画中,可以使用特异性过滤器来实现动态滤镜效果。

推荐的腾讯云相关产品:

  • 腾讯云域名注册:提供域名注册服务,可以帮助用户快速搭建网站。
  • 腾讯云CDN:提供内容分发网络服务,可以帮助用户加速网站访问速度。
  • 腾讯云云服务器:提供云服务器服务,可以帮助用户快速搭建服务器。

腾讯云相关产品介绍链接地址:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Nature Genetics | 基于人工智能神经网络的基因组解读系统Nvwa并揭示细胞命运决定共性规律

本文介绍由浙江大学基础医学院的郭国骥、韩晓平和良渚实验室的王晶晶共同通讯发表在 Nature Genetics 的研究成果:目前研究人员在生成和分析基因组方面做了大量努力,但大多数物种仍缺乏预测基因调控和细胞命运决定的遗传模型。在该研究中,作者利用自主构建的高通量单细胞测序平台Microwell-seq绘制了斑马鱼、果蝇和蚯蚓的全身单细胞转录组图谱,并探究了八种代表性的后生动物细胞类型的跨物种可比性,揭示了脊椎动物细胞类型保守的调控程序。作者开发了一种基于深度学习的模型Nvwa,用于在单细胞分辨率下预测基因表达和识别调控序列。作者还系统地比较了细胞类型特异性转录因子,以揭示脊椎动物和无脊椎动物细胞类型的保守遗传调控。该工作有助于为研究不同生物系统的调控语法提供宝贵的资源和新的策略。

02
  • Nucleic Acids Res. | scHumanNet:用于研究疾病基因细胞类型特异性的单细胞网络分析平台

    本文介绍由哈佛医学院的Martin Hemberg和韩国延世大学生命科学与生物技术学院生物技术系的Insuk Lee共同通讯发表在Nucleic Acids Research的研究成果:单细胞生物学面临的一个主要挑战是识别细胞类型特异性基因功能,这可能会大大提高精准医学的水平。基因的差异表达分析是一种流行但不充分的研究方法,需要补充与细胞类型相关的功能。因此,作者提出了单细胞网络分析平台scHumanNet,用于解决人类不同基因功能的细胞异质性。scHumanNet是基于HumanNet参考相互作用组构建细胞类型特异性基因网络(CGN), 它在单细胞转录组数据上构建的CGN比其他方法显示出更高的细胞环境功能相关性。此外,基于跨细胞类型网络紧致性的基因信号的细胞反褶积揭示了与T细胞相关的乳腺癌预后标志物。scHumanNet还可以利用CGN的中心性对与特定细胞类型相关的基因进行优先排序,并确定CGN在疾病和健康状况之间的差异中心。作者通过揭示乳腺癌预后基因GITR的T细胞特异性功能效应,以及抑制神经元特异性自闭症谱系障碍基因的功能缺陷,证明了scHumanNet的有效性。

    02

    【连载】癌症中的嵌合RNA (Chimeric RNA) (二)

    癌症基因组项目中的米特曼染色体畸变数据库和基因融合数据库等数据库发现了大量在癌症中出现的嵌合RNA。通过癌症基因组图谱计划(TCGA)这样的大型联盟的努力,积累了更多的RNA序列数据集。因此,越来越多的嵌合RNA被鉴定出来。然而,由于嵌合RNA在正常生理中也存在,其在癌症样本中也许不具有癌症特异性。因此,筛选出在正常组织/细胞中也表达的嵌合RNA对于发现癌症特异的嵌合RNA是十分重要的,对于新发现的嵌合RNA,应该在不同的癌症和正常样本中进行仔细验证和量化。在这一章中,我们首先总结了在癌症和正常生理组织中表达的各种类型的嵌合RNA,然后从生物信息学和生物学角度提供一个嵌合RNA的定义并用此去探索新的嵌合RNA,研究它们与临床参数的关系。

    01

    JAMA Psychiatry:六种精神疾病中皮层厚度的虚拟组织学及共同的神经生物学过程

    《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》 一、重要性   大规模的神经影像方面的研究已经揭示了多种精神疾病群体中皮层厚度与健康人群存在差异。但是,这些差异背后的潜在神经生物学过程尚不明确。 二、研究目标   确定6种精神疾病中病例组和健康对照组之间皮层厚度的群体差异在神经生物学上的相关性,这6种精神疾病包括注意力缺陷多动障碍(ADHD)、自闭症谱系障碍(ASD)、双相情感障碍(BD)、重度抑郁症(MDD)、强迫症(OCD)和精神分裂症(SCZ)。 三、研究对象   该研究中的被试者来自于ENAGMA consortium (The Enhancing NeuroImaging Genetics through Meta-Analysis)中的145个队列,横跨6种常见的精神疾病,每种疾病组及其对照组的总样本数量如下:注意力缺陷多动障碍组(ADHD)及其对照组:1841和1602;自闭症谱系障碍组(ASD)及其对照组:1748和1770;双相情感障碍组(BD)及其对照组:1547和3405;重度抑郁症组(MDD)及其对照组:2658和3572;强迫症组(OCD)及其对照组:2266和2007;精神分裂症组(SCZ)及其对照组:1688和3244。 四、研究方法 1. 皮层厚度的组间差异   对来自145个队列的被试者进行T1加权像磁共振扫描,并用FreeSufer软件计算基于Desikan-Killiany脑区模板的34个区域的皮层厚度,在每个队列中,分别以34个不同的脑区的皮层厚度为因变量,年龄、年龄的平方、性别和一些中心特异性的变量为协变量,建立多个多重线性回归模型,寻找每个队列中疾病组与对照组皮层厚度的组间差异;然后将145个队列的被试者按照疾病类别进行荟萃分析,采用“metafor”R包中的反向方差加权随机效应模型寻找每种疾病组与其对照组间在皮层厚度上的组间差异。 2. 磁共振成像上和遗传上的相似性   对于每种疾病病例组与对照组在皮层厚度上的组间差异,首先使用R包WGCNA中的biweight midcorrelation来分析这些组间差异的相关性,得到两两疾病间的相关性矩阵;从Brainstorm consortium获得这6种精神疾病在遗传上两两关联性数据;最后使用“vegan”R包中的Mantel test来检验皮质厚度组间差异的相关性矩阵与遗传相关性矩阵的相似性,以此评估这6种精神疾病在磁共振成像上和遗传上的相似性。 3. 虚拟组织学   虚拟组织学是一种把MRI来源的数据(比如疾病与对照组组间差异脑区)与特定脑区的细胞特异性表达的数据关联起来的一种方法。从Allen Human Brain Altas获取脑组织基因表达的数据并按照Desikan-Killiany脑区模板对应到相应脑区,此数据来源于6个捐赠者,年龄从25到57岁,经过两个阶段的过滤后,剩下2511个基因;接着使用从小鼠海马和大脑S1区域获得的单细胞测序数据将过滤后保留的基因归类到9种细胞(CA1锥体细胞、S1锥体细胞、中间神经元细胞、星形胶质细胞、小胶质细胞、少突胶质细胞、壁细胞、内皮细胞和上皮细胞);最后在34个脑区中,分别将每种细胞特异性基因表达谱与每个脑区的MRI数据(皮层厚度差异)进行关联,生成每个细胞类型与34个脑区的相关系数的分布。 4. 共表达分析   对6种疾病间共同的皮层厚度差异进行主成分分析,提取第一个主成分与细胞特异性基因的表达数据进行biweight midcorrelation分析,对统计结果进行FDR(FalseDiscovery Rate)校正,提取P<0.05的基因作为种子基因,基因表达数据来源于5个数据库 (AHBA, BrainCloud, Brain eQTL Almanac [Braineac], Genotype Tissue Expression [GTEx],BrainSpan),共534个捐赠者,年龄范围从0到102,共包括16245个基因的表达数据。每次分别以每个种子基因表达量为因变量,另一个基因的表达量为自变量,年龄和性别作为固定效应,捐赠者来源作为随机效应,构建线性混合模型分析两两基因间表达间的关联,每个种子基因取与其表达正相关的上0.1%基因构建共表达网络 5. 基因轨迹聚类   使用来源于BrainSpan Altas的数据根据基因表达的时空模式对共表达网络的基因进行聚类,聚类方法使用“TMixClust”R包中的光滑样条非参数混合模型进行聚类 6. 基因功能富集分析   使用“clusterProfiler”R包对共表达基因进行GO(Gene Ontology)和KEGG (Kyoto Encyclopedia of Genes and Genomes)的通路富集分析,每个通路基因数目最少设置

    00

    单细胞多组学揭示了进展性COVID-19中先天性和适应性免疫系统的非同步性

    SARS-CoV-2病毒的免疫反应失调是COVID-19重症的原因。然而,与免疫病理相关的免疫信号知之甚少。在这里,该项研究使用多组学单细胞分析来探讨COVID-19稳定或进展期住院患者的动态免疫反应和探索V(D)J库,并评估托珠单抗的细胞效应。基因表达和细胞系蛋白标记的协调分析显示,S100Ahi/HLA-DRlo经典的单核细胞和激活的LAG-3T细胞是进展性疾病的标志,并分别强调了骨系细胞和T细胞上MHC-II/LAG-3的异常相互作用。该项研究还发现,在扩大的效应细胞CD8+ 克隆、未突变的IGHG+ B细胞克隆和具有稳定体细胞超突变频率的突变B细胞克隆中,T细胞受体储备出现倾斜。总之,该项研究深入的免疫分析揭示了在进展期COVID-19中先天和适应性免疫相互作用的非同步性。

    05

    Commun. Biol. | BrainTACO: 一个可探索的多尺度多模态大脑转录组和连接性数据资源

    今天为大家介绍的是来自Katja Buhler团队的一篇论文。探索基因与大脑回路之间的关系,可以通过联合分析来自3D成像数据、解剖数据以及不同尺度、分辨率和模态的大脑网络的异构数据集来加速。为了超越各个资源原始目的的单一视角而生成一个综合视图,需要将这些数据融合到一个共同的空间,并通过可视化手段弥合不同尺度之间的差距。然而,尽管数据集不断扩展,但目前很少有平台能够整合和探索这种异构数据。为此,作者推出了BrainTACO(Brain Transcriptomic And Connectivity Data,大脑转录组和连接性数据)资源,这是一个将异构的、多尺度的神经生物学数据空间映射到一个常见的、分层的参考空间,并通过整体数据整合方案进行组合的选择。为了访问BrainTACO,作者扩展了BrainTrawler,这是一个基于网络的空间神经生物学数据的可视化分析框架,并增加了对多个资源的比较可视化。这使得大脑网络的基因表达分析有着前所未有的覆盖范围,并允许识别在小鼠和人类中可能对连接性发现有贡献的潜在遗传驱动因素,这有助于发现失调连接表型。因此,BrainTACO减少了计算分析中通常需要的耗时的手动数据聚合,并通过直接利用数据而不是准备数据来支持神经科学家。BrainTrawler,包括BrainTACO资源,可以通过网址https://braintrawler.vrvis.at/访问到。

    01

    “站长,怎么判断是不是链特异性建库呢?”

    结合小站之前的教程这一步应该插在STAR Mapping之后从零到壹:10元~Mapping神器STAR的安装及用随便选一个样本,在样本文件夹里找到bam文件,然后用samtools index建立baibam与bai要在一个目录下,载入到IGV软件中,就是视频那个样子啦。位置信息是chr12:123,406,542-123,416,558首先看是不是链特异性,右键选color alignments by first-of-pair strand如视频那样,红蓝分布,就是链特异性再看是什么样的链特异性在链特异性那个样本右键选color alignments by read strand鼠标放在红或者蓝的read上,看信息。显示first of pair那个read的箭头方向与基因的方向相反,这就提示是dUTP建库的方法。知道这些有啥用呢?在STAR运行结束后的ReadsPerGene.out.tab文件中非链特异性的要选第二列那个数而dUTP链特异性建库要选第四列那个数所以批量处理counts数教程中"站长,Mapping之后counts怎么合并成一个表?"df.use <- data.frame(v1 = df.read 这句代码中V4就是第四列,选择这个是针对dUTP链特异性建库测序的,如果是非链特异性建库图中那个位置应该改成V2就可以啦~~

    01

    【小技巧】如何测序数据是否为链特异性建库呢?

    结合小站之前的教程这一步应该插在STAR Mapping之后从零到壹:10元~Mapping神器STAR的安装及用随便选一个样本,在样本文件夹里找到bam文件,然后用samtools index建立baibam与bai要在一个目录下,载入到IGV软件中,就是视频那个样子啦。位置信息是chr12:123,406,542-123,416,558首先看是不是链特异性,右键选color alignments by first-of-pair strand如视频那样,红蓝分布,就是链特异性再看是什么样的链特异性在链特异性那个样本右键选color alignments by read strand鼠标放在红或者蓝的read上,看信息。显示first of pair那个read的箭头方向与基因的方向相反,这就提示是dUTP建库的方法。知道这些有啥用呢?在STAR运行结束后的ReadsPerGene.out.tab文件中非链特异性的要选第二列那个数而dUTP链特异性建库要选第四列那个数所以批量处理counts数教程中"站长,Mapping之后counts怎么合并成一个表?"df.use <- data.frame(v1 = df.read 这句代码中V4就是第四列,选择这个是针对dUTP链特异性建库测序的,如果是非链特异性建库图中那个位置应该改成V2就可以啦~~

    02

    人类小脑内在组织背后的基因图谱

    人类小脑的功能多样性在很大程度上被认为更多地来自于其广泛的联系,而不是局限于其部分不变的结构。然而,小脑内在组织中连接的确定是否以及如何与微尺度基因表达相互作用仍不清楚。在这里,我们通过研究同时连接小脑功能异质性及其驱动因素的遗传基质,即连接因素,来解码小脑功能组织的遗传图谱。我们不仅鉴定了443个网络特异性基因,而且还发现它们的共表达模式与小脑内功能连接(FC)密切相关。其中90个基因也与皮质-小脑认知-边缘网络的FC有关。进一步发现这些基因的生物学功能,我们进行了“虚拟基因敲除”,通过观察基因之间的耦合和FC以及将基因分成两个子集,即,一个涉及小脑神经发育的阳性基因贡献指标(GCI+)和一个与神经传递有关的阴性基因集(GCI−)。一个更有趣的发现是,GCI−与小脑连接-行为关联显著相关,并与许多公认的与小脑功能异常密切相关的脑部疾病密切相关。我们的研究结果可以共同帮助重新思考小脑功能组织背后的遗传底物,并为神经精神疾病中涉及小脑的高阶功能和功能障碍提供可能的微宏观相互作用的机制解释。

    02

    Nano Lett:设计具有免疫亲和力的树枝状聚合物捕获肿瘤来源外泌体

    癌症诊断和预后的新技术将推动精准医学的实践。液体活组织检查被认为是这样一项技术,因为它们是微创的,而且经常可以通过简单的抽血进行。这些测试旨在检测肿瘤定期进入血液的生物标记物,如游离DNA(cfDNA)、循环肿瘤细胞(CTCs)或包括外泌体在内的细胞外小泡(EVs)。尽管在生物标记物中CTCs可以获得最多的信息,但是这些细胞在表型上是非常罕见和异质性的,这使得临床上有意义的检测和分析变得十分困难。相比之下,cfDNA由于其含量丰富,在血液中相对容易被检测到,然而,它不能提供关于基因表达变化的动态信息。外泌体在大小、丰度和潜在的诊断信息方面位于这两个更具探索性的生物标记物之间,代表了在血液中发现的一类新兴的癌症生物标记物。这些纳米尺度的囊泡含有包装在膜中的功能性mRNA,膜上带有与它们起源的细胞相同的特征表面标记。此外,现有的文献已经将外泌体的组成和释放率与恶性肿瘤和转移联系起来,表明这些囊泡作为预后生物标志物的巨大潜力。

    03

    【免费】站长线下课:用STAR去Mapping~~~~

    结合小站之前的教程这一步应该插在STAR Mapping之后从零到壹:10元~Mapping神器STAR的安装及用随便选一个样本,在样本文件夹里找到bam文件,然后用samtools index建立baibam与bai要在一个目录下,载入到IGV软件中,就是视频那个样子啦。位置信息是chr12:123,406,542-123,416,558首先看是不是链特异性,右键选color alignments by first-of-pair strand如视频那样,红蓝分布,就是链特异性再看是什么样的链特异性在链特异性那个样本右键选color alignments by read strand鼠标放在红或者蓝的read上,看信息。显示first of pair那个read的箭头方向与基因的方向相反,这就提示是dUTP建库的方法。知道这些有啥用呢?在STAR运行结束后的ReadsPerGene.out.tab文件中非链特异性的要选第二列那个数而dUTP链特异性建库要选第四列那个数所以批量处理counts数教程中"站长,Mapping之后counts怎么合并成一个表?"df.use <- data.frame(v1 = df.read 这句代码中V4就是第四列,选择这个是针对dUTP链特异性建库测序的,如果是非链特异性建库图中那个位置应该改成V2就可以啦~~

    02

    双特异性抗体在急性髓细胞白血病治疗中的应用

    双特异性抗体由两种或多种抗体的抗原识别片段组成,使其可以同时与靶向细胞以及免疫效应细胞结合。早在20世纪80年代,科学家们就对免疫效应细胞靶向特定癌症相关抗原的能力以及其在癌症治疗方面的应用前景表现出了浓厚兴趣。近来迅猛发展的医疗技术使得重组蛋白类生物制品的工程设计,开发和生产变得更加容易,再加上制药行业的需求,极大地推动了双特异性抗体的研究。今天,已经有超过50种不同类型的双特异性抗体正在进行临床试验。众多双特异性抗体技术平台正在接受检验,其中包括单链可变片段(single-chain variable fragment, scFv),串联双抗体(tandem diabodies, TandAb),双特异性T细胞桥接抗体(bispecific T-cell engagers, BiTE),双亲和力重新定向抗体(dual affinity retargeting antibodies, DART)和双特异性杀伤细胞桥接抗体(Bispecific killer cell engagers, BiKEs) (图1)。在癌症治疗中,目前正在开发的双特异性抗体要么能够募集并重定向免疫效应细胞来杀伤肿瘤细胞或通过阻断肿瘤表面配体与受体的结合来抑制不同的肿瘤相关信号通路。目前最常用的策略是,在双特异性抗体上设计一个片段与肿瘤细胞上的抗原结合,而另一个片段能够与免疫效应细胞结合(经常是通过结合CD3分子来连接T细胞)。这就使得双特异性抗体能够重定向免疫效应细胞到肿瘤细胞周围并且不依赖于主要组织相容性复合体(MHC),从而可以避免因为肿瘤细胞下调MHC而导致的免疫逃逸(图2)。取决于双特异性抗体重定向的效应免疫细胞的类型,靶细胞,也就是肿瘤细胞,通常被颗粒酶B/穿孔素介导的或者是抗体依赖性细胞介导的细胞毒性作用(antibody-dependent cell-mediated cytotoxicity, ADCC)杀死。

    02
    领券