首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Gurobi求解器及其收敛性

Gurobi求解器是一种高性能的数学优化软件,用于解决线性规划、整数规划、混合整数规划、二次规划等各种优化问题。它具有快速、准确和可靠的特点,被广泛应用于各个领域的决策支持系统和运筹学问题求解中。

Gurobi求解器的主要优势包括:

  1. 高性能:Gurobi求解器采用了先进的算法和优化技术,能够在较短的时间内找到最优解或接近最优解。它具有高效的求解速度和较低的内存占用,能够处理大规模的优化问题。
  2. 多平台支持:Gurobi求解器支持多种操作系统,包括Windows、Linux和Mac OS等,可以在不同的计算环境中运行和部署。
  3. 灵活的接口:Gurobi求解器提供了丰富的编程接口,支持多种编程语言,如Python、C++、Java等,使开发人员可以方便地集成和调用求解器的功能。
  4. 可视化工具:Gurobi求解器提供了直观易用的可视化工具,可以帮助用户分析和调试优化模型,优化求解过程。

Gurobi求解器在各个领域都有广泛的应用场景,包括物流和运输规划、生产调度、供应链优化、金融投资组合优化、能源管理、电信网络优化等。它可以帮助企业和组织优化资源分配、提高效率和降低成本。

腾讯云提供了Gurobi求解器的云服务,即Gurobi Cloud,用户可以通过腾讯云平台快速获取和使用Gurobi求解器的功能。具体产品介绍和使用方法可以参考腾讯云的官方文档:Gurobi Cloud产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • AI for Science:清华团队提出使用低维优化求解器求解高维/大规模优化问题的高效方法

    摘要:在2023年7月即将召开的机器学习领域知名国际会议ICML2023中,清华大学计算机系徐华老师团队以长文的形式发表了采用低维优化求解器求解高维/大规模优化问题的最新研究成果(论文标题“GNN&GBDT-Guided Fast Optimizing Framework for Large-scale Integer Programming”)。本项研究针对工业界对于大规模整数规划问题的高效求解需求,提出了基于图卷积神经网络和梯度提升决策树的三阶段优化求解框架,探索了仅使用小规模、免费、开源的优化求解器求解只有商用优化求解器才能解决的大规模优化问题的道路,在电力系统、物流配送、路径规划等诸多应用领域中均具有潜在的应用价值。

    03

    凸优化(8)——内点法中的屏障法与原始-对偶方法,近端牛顿方法

    这一节我们主要谈一些二阶方法——内点法(Interior Method),如果还有空位的话,还会简单引入一下近端牛顿方法(Proximal Newton Method)。你可能要问明明只有一个方法,为什么要用“一些”?这是因为内点法其实是一种方法的总称,我们在《数值优化》的第A节(数值优化(A)——线性规划中的单纯形法与内点法),第C节(数值优化(C)——二次规划(下):内点法;现代优化:罚项法,ALM,ADMM;习题课)分别提到过线性规划与二次规划问题的内点法。在这一节我们会提到两种内点法——屏障法(Barrier Method)和原始-对偶方法(Primal-Dual Method),它们与之前我们提到的方法的思路非常相似,但是视角又略有不同,因此值得我们再去谈一谈。

    00

    基于神经网络的机器人学习与控制:回顾与展望

    机器人因其高效的感知、决策和执行能力,在人工智能、信息技术和智能制造等领域中具有巨大的应用价值。目前,机器人学习与控制已成为机器人研究领域的重要前沿技术之一。各种基于神经网络的智能算法被设计,从而为机器人系统提供同步学习与控制的规划框架。首先从神经动力学(ND)算法、前馈神经网络(FNNs)、递归神经网络(RNNs)和强化学习(RL)四个方面介绍了基于神经网络的机器人学习与控制的研究现状,回顾了近30年来面向机器人学习与控制的智能算法和相关应用技术。最后展望了该领域存在的问题和发展趋势,以期促进机器人学习与控制理论的推广及应用场景的拓展。

    03

    基于神经网络的机器人学习与控制:回顾与展望

    机器人因其高效的感知、决策和执行能力,在人工智能、信息技术和智能制造等领域中具有巨大的应用价值。目前,机器人学习与控制已成为机器人研究领域的重要前沿技术之一。各种基于神经网络的智能算法被设计,从而为机器人系统提供同步学习与控制的规划框架。首先从神经动力学(ND)算法、前馈神经网络(FNNs)、递归神经网络(RNNs)和强化学习(RL)四个方面介绍了基于神经网络的机器人学习与控制的研究现状,回顾了近30年来面向机器人学习与控制的智能算法和相关应用技术。最后展望了该领域存在的问题和发展趋势,以期促进机器人学习与控制理论的推广及应用场景的拓展。

    03

    最速下降法收敛速度快还是慢_最速下降法是全局收敛算法吗

    摘自《数值最优化方法》 \qquad 已知 设步长为 α \alpha α,下降方向为 d d d, f ( x k + α d ) f(x_{k}+\alpha d) f(xk​+αd)在 x k x_{k} xk​的 T a y l o r Taylor Taylor展示为 f ( x k + 1 ) = f ( x k + α d ) = f ( x k ) + α g k T d + O ( ∣ ∣ α d ∣ ∣ 2 ) f(x_{k+1})=f(x_{k}+\alpha d)=f(x_{k})+\alpha g_{k}^{T}d+O(||\alpha d||^{2}) f(xk+1​)=f(xk​+αd)=f(xk​)+αgkT​d+O(∣∣αd∣∣2)为使函数值下降,下降方向满足 g k T d < 0 g_{k}^{T}d<0 gkT​d<0 \qquad 收敛性和收敛速度 收敛性 算法产生的点阵 { x k } \{x_{k}\} { xk​}在某种范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣⋅∣∣意义下满足 l i m k → ∞ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \mathop{lim}\limits_{k\to\infty}||x_{k}-x^{*}||=0 k→∞lim​∣∣xk​−x∗∣∣=0称算法是收敛的,当从任意初始点出发时,都能收敛到 x ∗ x^{*} x∗称为具有全局收敛性,仅当初始点与 x ∗ x_{*} x∗​充分接近时才能收敛到 x ∗ x^{*} x∗称算法具有局部收敛性。 \qquad 收敛速度(已知收敛):若 l i m k → ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = a \mathop{lim}\limits_{k\to\infty}\frac{||x_{k+1}-x^{*}||}{||x_{k}-x^{*}||}=a k→∞lim​∣∣xk​−x∗∣∣∣∣xk+1​−x∗∣∣​=a \qquad 当 0 < a < 1 0<a<1 0<a<1时,迭代点列 { x k } \{x_{k}\} { xk​}的收敛速度是线性的,这时算法称为线性收敛。当 a = 0 a=0 a=0时, { x k } \{x_{k}\} { xk​}的收敛速度是超线性的,称为超线性收敛。 \qquad 二阶收敛:若 l i m k → ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ 2 = a \mathop{lim}\limits_{k\to\infty}\frac{||x_{k+1}-x^{*}||}{||x_{k}-x^{*}||^{2}}=a k→∞lim​∣∣xk​−x∗∣∣2∣∣xk+1​−x∗∣∣​=a \qquad a a a为任意常数,迭代点列 { x k } \{x_{k}\} { xk​}的收敛速度是二阶的,这时算法称为二阶收敛。超线性收敛和二阶收敛的收敛速度较快,是理想的收敛速度。 \qquad 负梯度法和牛顿 ( N e w t o n ) (Newton) (Newton)型方法 N e w t o n Newton Newton型方法特殊情形的一种负梯度方法—最速下降法。首先下降方向满足 g k T d < 0 g_{k}^{T}d<0 gkT​d<0,为使 ∣ g k d ∣ |g_{k}d| ∣gk​d∣达到最大值,则由 C a u c h y − S c h w a r z Cauchy-Schwarz Cauchy−Schwarz不等式 ∣ g k T d ∣ ≤ ∣ ∣ g k ∣ ∣ ∣ ∣ d ∣ ∣ |g_{k}^{T}d|\leq||g_{k}||||d|| ∣gkT​d∣≤∣∣gk​∣∣∣∣d∣∣知当且仅当 d = d k = − g k / ∣ ∣ g k ∣ ∣ d=d_{k}=-g_{k}/||g_{k}|| d=dk​=−gk​/∣∣gk​∣∣时,等式成立, g k T d g_{k}^{T}d gkT​d达到最小。考虑在 d k d_{k} dk​方向上的步长,取其负梯度方向即 d k = − g k d_{k}=-g_{k} dk​=−gk​。 \qquad 收敛性分析 1. 给定 G G G度量下的范数定义,给出 K a n t o r o v i c h Kantorovich Kantorovich不等式。定义 设 G ∈ R n × n G\in\mathbb{R}^{n\times n} G∈Rn×n对称正定, u , v ∈ R n u,v\in\mathbb{R}^{n} u,v∈Rn则 u u u与 v v

    03
    领券