首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

SLAM算法&技术之Gauss-Newton非线性最小二乘算法

编辑丨点云PCL 前言 很多问题最终归结为一个最小二乘问题,如SLAM算法中的Bundle Adjustment,位姿图优化等等。求解最小二乘的方法有很多,高斯-牛顿法就是其中之一。...推导 对于一个非线性最小二乘问题: ? 高斯牛顿的思想是把 f(x)利用泰勒展开,取一阶线性项近似。 ? 带入到(1)式: ? 对上式求导,令导数为0。 ? 令 ? 式(4)即为 ?...我们可以构建一个最小二乘问题: ? 要求解这个问题,根据推导部分可知,需要求解雅克比。 ? 使用推导部分所述的步骤就可以进行解算。...它通过最小化误差的平方和寻找数据的最佳函数匹配。 最小平方问题分为两种:线性最小二乘法,和非线性的最小二乘法,取决于在所有未知数中的残差是否为线性。...线性的最小平方问题发生在统计回归分析中;它有一个封闭形式的解决方案。非线性的问题通常经由迭代细致化来解决;在每次迭代中,系统由线性近似,因此在这两种情况下核心演算是相同的。

2.3K20

论文翻译 | LS-Net:单目双目视觉的非线性最小二乘学习算法

1 摘要 在本文中,我们提出了最小二乘网络,一种神经非线性最小二乘优化算法,即使在逆境中也能有效地优化这些代价函数.与传统方法不同,所提出的求解器不需要hand-crafted的正则化或先验,因为这些都是从数据中隐式学习的...目标函数的一种特别有趣的形式是由许多平方剩余项的和组成的. 在大多数情况下,剩余项是优化变量的非线性函数,这类目标函数的问题称为非线性最小二乘(NLLS)问题。...在本文中,我们旨在利用来自传统非线性最小二乘解算器的强大而成熟的思想,并将这些思想与有前途的基于学习的新方法相结合。...综上所述,本文的贡献如下: 我们提出了一种端到端的可训练优化方法,它建立在对NLLS问题的强大的近似基于Hessian的优化方法的基础上 直接从数据中隐式学习最小二乘问题的先验和正则....第一个采用机器学习来优化光度误差的算法 3 非线性最小二乘求解 典型的非线性最小二乘问题如下: ? 其中 代表第j项的误差,x是优化变量,E代表目标函数.遇到这些情况,我们通常使用GN、LM等.

1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一文详解非线性优化算法:保姆级教程-基础理论

    非线性优化之G2O:基础理论知识 在这部分主要进行SLAM14讲中的基础知识讲解,若已熟读过的同学可以绕道下一步,在后续部分推导用到的公式我都会再次给出,并标记。 ★问题一:什么是非线性最小二乘?...这便构成了最简单的最小二乘问题。可以想到,要使得有最小值,即找到函数极值点,而极值点往往在导数为零的点,对于易求解的,使用求导的方式,但在SLAM中,往往导数不易求解,无法找到极值点。...因此,选择使用一种很原始的方法,迭代试验法: ? ★问题二:高斯牛顿法求解非线性最小二乘 ? ? ?...★问题三:列文伯格-马夸尔特法求解非线性最小二乘 Levenberg-Marquardt算法是使用最广泛的非线性最小二乘算法,同时具备梯度法和牛顿法的优点。 ? ?...更多的重点放在库的使用,首先我们通过一个简单的非线性最小二乘函数,引出最基本的使用方法。 ? ? ? ?

    84651

    最小二乘法和梯度下降法的一些总结

    梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性核非线性都可以),但不仅限于最小平方和问题。高斯-牛顿法是另一种经常用于求解非线性最小二乘的迭代法(一定程度上可视为标准非线性最小二乘求解方法)。...还有一种叫做Levenberg-Marquardt的迭代法用于求解非线性最小二乘问题,就结合了梯度下降和高斯-牛顿法。...所以如果把最小二乘看做是优化问题的话,那么梯度下降是求解方法的一种,是求解线性最小二乘的一种,高斯-牛顿法和Levenberg-Marquardt则能用于求解非线性最小二乘。...最小二乘法的目标:求误差的最小平方和,对应有两种:线性和非线性。线性最小二乘的解是closed-form即,而非线性最小二乘没有closed-form,通常用迭代法求解。...梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。

    1.4K10

    《spss统计分析与行业应用案例详解》实例26非线性回归分析 27加权最小二乘回归分析

    非线性回归分析的功能与意义 它是一种功能更强大的处理非线性问题的方法,它可以使用户自定义任意形式的函数,从而更加准确地描述变量之间的关系 相关数据 ?...参与培训的天数与长期表现指数 分析过程 分析-回归-非线性 ? ? 其他设置默认值 结果分析 (1)参数估计值 ? 两个参数的直线区间都不含0,所以两个参数值都有统计学意义。...加权最小二乘回归的功能与意义 在标准的线性回归模型中,有一个基本假设是整个总体同方差也就是因变量的变异不随自身预测值以及其他自变量值的变化而变动。然而实际问题中这一假设并不被满足。...加权最小二乘回归分析就是为了解决这一问题而设计的,其基本原理是不同的数据赋予不同的权重以平衡不同变异数据的影响。 相关数据 ? 分析过程 分析-回归-权重估计 ?...模型综述 数据经过简单观察,不能确定整个总体同方差的变异不随自身预测值以及其他自变量值的变化而变动这一条件成立,所以用加权最小二乘回归分析 结论:y=0.125+39.748*x

    2.1K20

    一文详解非线性优化算法:保姆级教程-基础理论

    非线性优化之G2O:基础理论知识 在这部分主要进行SLAM14讲中的基础知识讲解,若已熟读过的同学可以绕道下一步,在后续部分推导用到的公式我都会再次给出,并标记。 ★问题一:什么是非线性最小二乘?...这便构成了最简单的最小二乘问题。可以想到,要使得有最小值,即找到函数极值点,而极值点往往在导数为零的点,对于易求解的,使用求导的方式,但在SLAM中,往往导数不易求解,无法找到极值点。...因此,选择使用一种很原始的方法,迭代试验法: ? ★问题二:高斯牛顿法求解非线性最小二乘 ? ? ?...★问题三:列文伯格-马夸尔特法求解非线性最小二乘 Levenberg-Marquardt算法是使用最广泛的非线性最小二乘算法,同时具备梯度法和牛顿法的优点。 ? ?...更多的重点放在库的使用,首先我们通过一个简单的非线性最小二乘函数,引出最基本的使用方法。 ? ? ? ?

    4.1K21

    最小二乘多项式及其脊线的极值全局灵敏度分析

    ,用于理解数据集中不同参数之间的重要性和相互作用。...这种数据集的特征是一组向量值输入参数和一组感兴趣的标量值输出量,其中我们通常假定输入是独立的,并且可以获得关于它们的联合密度的信息。或者,如果输入是相关的,则需要关于边际及其相关性的信息。...在这两种情况下,如果感兴趣的输出量是光滑和连续的,则可以使用多项式最小二乘逼近来提取Sobol的指数。在本文中,我们通过研究这一范式的两个不同方面,建立在这些以前众所周知的思想的基础上。...首先,我们研究了如果利用多项式岭近似-一个在子空间上拟合的多项式最小二乘,是否可以有效地计算灵敏度指数。我们讨论了利用这种特殊的依赖结构来减少此过程所需的模型评估数量的配方。...其次,我们讨论了两种求解约束近输出极值时输入灵敏度的启发式算法:基于偏斜的灵敏度指标和蒙特卡罗滤波。我们提供了实现本文讨论的思想的算法,代码可以在网上找到。

    65720

    R语言中的偏最小二乘PLS回归算法

    p=4124 偏最小二乘回归: 我将围绕结构方程建模(SEM)技术进行一些咨询,以解决独特的业务问题。我们试图识别客户对各种产品的偏好,传统的回归是不够的,因为数据集的高度分量以及变量的多重共线性。...我不相信传统的扫描电镜在这一点上是有价值的,因为我们没有良好的感觉或理论来对潜在的结构做出假设。此外,由于数据集中的变量数量众多,我们正在将SEM技术扩展到极限。....,2004年,“初步指南偏最小二乘分析”,Understanding Statistics,3(4),283-297中可以找到关于这个限制的有趣讨论。...该包的一个怪癖是你需要将预测变量和响应分开,即将响应变量列放在数据帧的末尾。...T $ y.pred y-预测 $ resid 残差 $ T2 T2经济系数 Q2第二季度交叉验证这个包中有很多,我强烈建议阅读优秀的教程来了解更多信息。

    1.6K20

    非线性最小二乘问题例题_非线性自适应控制算法

    摘录的一篇有关求解非线性最小二乘问题的算法–LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触: LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题...LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点。...LM算法属于一种“信赖域法”——所谓的信赖域法,此处稍微解释一下:在最优化算法中,都是要求一个函数的极小值,每一步迭代中,都要求目标函数值是下降的,而信赖域法,顾名思义,就是从初始点开始,先假设一个可以信赖的最大位移...s,然后在以当前点为中心,以s为半径的区域内,通过寻找目标函数的一个近似函数(二次的)的最优点,来求解得到真正的位移。...至于这个求导过程是如何实现的,我还不能给出建议,我使用过的方法是拿到函数的方程,然后手工计算出其偏导数方程,进而在函数中直接使用,这样做是最直接,求导误差也最小的方式。

    85430

    最经典的线性回归模型参数估计算法——最小二乘

    首先,我们要明白最小二乘估计是个什么东西?说的直白一点,当我们确定了一组数的模型之后,然后想通过最小二乘的办法来确定模型的参数。...那我们就想到用这样一种办法,在这些可能的直线中,我们求训练样本的那些点到直线之间的距离的和。...这样,每条直线都可以有一个值,我们把这个距离的和最小的那条直线找出来,我们认为这条直线它最顺眼,因为它照顾到了所有的训练样本点的情绪,不偏不倚。这种方法就是最小二乘法。...公式7 那这组β可不可以让我们的公式4取得最小值呢,我们把公式7带入到公式4中 ? 公式8 公式8中的第三项它是等于0的。所以公式8只剩下了 ?...公式9 又因为X'X是一个正定矩阵,所以公式9中的第二项它>=0,所以 ? 公式10 也就证明了我们的公式7中的β就是要找的那个β。

    2.9K60

    非线性回归中的Levenberg-Marquardt算法理论和代码实现

    输入一堆点并找到“完全”匹配趋势的曲线是令人兴奋的。但这如何工作?为什么拟合直线与拟合奇怪形状的曲线并不相同。每个人都熟悉线性最小二乘法,但是,当我们尝试匹配的表达式不是线性时,会发生什么?...提出问题 在某些情况下,线性回归是不够的。有时需要将一系列数据调整为非线性表达式。在这些情况下,普通最小二乘对我们不起作用,我们需要求助于不同的方法。...在每次迭代中,我们都会向函数的最小值移动一点。梯度下降法的两个重要方面是初始猜测和我们在每次迭代时采取的步骤的大小。这种方法的效率在这两个方面是非常可靠的。 这和非线性回归有什么关系?...但是,我认为这段代码对于任何更复杂的事情以及了解“幕后”正在发生的事情都是一个很好的起点。尽管此笔记本中显示的示例涉及到二维问题,但是该算法背后的逻辑可以应用于多种情况。...但是,了解所有这些计算的来源始终很重要。进行线性和非线性回归是可以在数据分析和机器学习中完成的许多其他事情的基础。

    2K20

    R语言中的偏最小二乘回归PLS-DA

    p=8890 主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合来自预测变量的主成分(PC)(点击文末“阅读原文”获取完整代码数据)。...让我们开始使用R 癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。...(_x_轴)训练的模型中获得的平均准确度(_y_轴,%)。...在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。...总而言之,我们将使用PLS-DA和PCA-DA中预测的变量重要性(ViP)确定十种最能诊断癌症的蛋白质。 上面的PLS-DA ViP图清楚地将V1184与所有其他蛋白质区分开。

    19110

    R语言中的偏最小二乘回归PLS-DA

    主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合来自预测变量的主成分(PC)(点击文末“阅读原文”获取完整代码数据)。 这带来许多优点: 预测变量的数量实际上没有限制。...让我们开始使用R 癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。...(_x_轴)训练的模型中获得的平均准确度(_y_轴,%)。...在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。...这可能是一个有趣的癌症生物标志物。当然,必须进行许多其他测试和模型来提供可靠的诊断工具。 本文选自《R语言中的偏最小二乘回归PLS-DA》。

    41910

    R语言中的偏最小二乘回归PLS-DA

    p=8890 主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合 来自预测变量的主成分(PC)。这带来许多优点: 预测变量的数量实际上没有限制。...让我们开始使用R 癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。...(x轴)训练的模型中获得的平均准确度(y轴,%)。 ...在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。...总而言之,我们将使用PLS-DA和PCA-DA中预测的可变重要性(ViP)确定十种最能诊断癌症的蛋白质。  上面的PLS-DA ViP图清楚地将V1184与所有其他蛋白质区分开。

    1.9K11

    SLAM中位姿估计的图优化方法比较

    它是非线性最小二乘问题的通用优化框架。[3] 中介绍了第一种平滑方法 pSAM。[4] 中介绍了对这种方法的改进,即增量平滑和建图 (iSAM)。...位姿图优化的目标是找到一种节点配置,使位姿图中所有约束的最小二乘误差最小。...一般来说,非线性最小二乘优化问题可以定义如下: 传统上,(1)的解决方案是通过迭代优化技术(例如,G-N或莱L-M)获得的。他们的想法是用围绕当前初始猜测的一阶泰勒展开来近似误差函数。...在本节中,我们将简要描述基于非线性最小二乘法的优化框架,这些框架以位姿图的形式提供解决方案。 A.g2o g2o [2] 是一个开源通用框架,用于优化可以定义为图的非线性函数。...它主要致力于解决非线性最小二乘问题(BA和SLAM),但也可以解决一般的无约束优化问题。该框架易于使用、可移植且经过广泛优化,以提供具有低计算时间的解决方案质量。

    2K40

    最小二乘回归的Python实现

    回归分析是实现从数据到价值的不二法门。 它主要包括线性回归、0-1回归、定序回归、计数回归,以及生存回归五种类型。 我们来讨论最基础的情况——一元线性回归。...最常见的拟合方法是最小二乘法,即OLS回归。它时刻关注着实际测量数据,以及拟合直线上的相应估计值,目的是使二者之间的残差有最小的平方和。...即: 为了使残差的平方和最小,我们只需要分别对a、b求偏导,然后令偏导数等于0。立即推出a、b值: 总之,OLS回归的原理是,当预测值和实际值距离的平方和最小时,我们就选定模型中的参数。...上图中P值显示,中证500收益率的系数显著;但沪深300收益率的系数并不显著,没有通过5%的显著性检验。 总结 OLS回归在计算成本等方面占有一定优势,但有时不太具有说服力。...这时我们如果仍采用普通最小二乘法估计模型参数,就会产生一系列不良的后果,如:参数估计量非有效、变量的显著性检验失去意义、模型的预测失效等。 所以,在本文中我们首先进行简单的ols回归。

    2.8K60

    opencv lsd算法_opencv目标识别

    可惜H不一定是正定的,这就引导出了下面的方法 高斯-牛顿法 是另一种经常用于求解非线性最小二乘的迭代法(一定程度上可视为标准非线性最小二乘求解方法)。...的迭代法用于求解非线性最小二乘问题,就结合了梯度下降和高斯-牛顿法。...,那么梯度下降是求解方法的一种,\(x=(A^TA)^{-1}A^Tb\)是求解线性最小二乘的一种,高斯-牛顿法和Levenberg-Marquardt则能用于求解非线性最小二乘。...其利用了目标函数的泰勒展开式把非线性函数的最小二乘化问题化为每次迭代的线性函数的最小二乘化问题。...摘录的一篇有关求解非线性最小二乘问题的算法–LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触: LM算法,全称为Levenberg-Marquard算法,它可用于解决非线

    1.5K20
    领券