首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

一个函数、一个案例,手把手带你学习Pandas统计汇总函数!

前几天看到一篇文章,给大家列出了Pandas的常用100函数,并将这100个函数分成了6类:统计汇总函数、数据清洗函数、数据筛选、绘图与元素级运算函数、时间序列函数和其他函数。...注明: 由于实际问题中,表格数据每一行代表一个样本,每一列代表一个字段,一般情况下对行操作的意义不大,主要是对每个不同列进行操作。因此,下面我们仅讲述对列的操作。...12. groupby、aggregate groupby():分组;aggregate():聚合运算(可以自定义统计函数); ? 上面已经很清楚为大家展示了,分组后的数据形式。...其实一旦使用groupby后,系统会自动为你分组,然后我们就可以分别对分组后的数据,进行操作,比如下面这个案例。 ?...16. cumsum、cumprod cumsum():运算累计和;cumprod():运算累计积; ?

1.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    仅需添加一行代码,即可让Pandas加速四倍 | Pandas on Ray

    快来了解新库Modin,可以分割pandas的计算量,提高数据处理效率,一行代码即刻开启Pandas四倍速。...可以使用.mean()来算出每行的平均数,用groupby将数据分类,用drop_duplicates()来删除重复项,还有很多Pandas的其他内置函数以供使用。...不管有多少行,多少列,或者两者都很多,它都能游刃有余地处理。 ? Pandas DataFrame(左)作为整体储存,只交给一个CPU处理。...运行了.fillna()仅花了1.8秒,而Modin只用了0.21秒,快了8.57倍!...图源:Unsplash 有时Pandas会比Modin快一些,即使在处理这个有5,992,097(接近6百万)行的数据时。下列表格对比展示了笔者分别使用Pandas和Modin做测试的运行时间。

    5.6K30

    『数据分析』pandas计算连续行为天数的几种思路

    最近在处理数据的时候遇到一个需求,核心就是求取最大连续行为天数。类似需求在去年笔者刚接触pandas的时候也做过《利用Python统计连续登录N天或以上用户》,这里我们可以用同样的方法进行实现。...图2:akshare数据预览 由于我们只需要用到aqi,并按照国际标准进行优良与污染定级,这里简单做下数据处理如下:(后台直接回复0427获取的数据是处理后的数据哈) import pandas as...图5:辅助列 步骤3:分组计数获得连续天数,分组求最小最大值获得连续 污染起止日期 t.groupby(groupids).agg({ 'time': lambda x:f'{x.min()}~...思路2:比对相邻两天空气质量标记 思路2有两种解法,其一是利用循环创建辅助列,其二是利用shift和cumsum创建辅助列,具体我们可以往下看。...( aqi.query('空气质量=="污染"') # 这里筛选 污染 天气 .groupby((aqi.空气质量.shift() !

    7.7K11

    Pandas 2.2 中文官方教程和指南(二十·二)

    但是,由于一般情况下它可以返回零个或多个组的行,因此 pandas 在所有情况下都将其视为过滤器。...也适用于一些绘图方法。...但是,因为一般来说它可以返回零个或多个每组的行,所以 pandas 在所有情况下都将其视为过滤器。...在处理中,当组行之间的关系比它们的内容更重要时,或者作为仅接受整数编码的算法的输入时,这可能是一个中间的类别步骤。...这在处理中间类别步骤时可能很有用,当组行之间的关系比它们的内容更重要时,或者作为仅接受整数编码的算法的输入。(有关 pandas 对完整分类数据的支持的更多信息,请参阅分类介绍和 API 文档。)

    47600

    一场pandas与SQL的巅峰大战(五)

    1.不分组情况 最直观的思路是,对每一行的金额,都累加从第一行到当前行的金额。在MySQL中,可以考虑自连接的方式,但需要使用不等值连接。...pandas计算累计百分比 在pandas中,提供了专门的函数来计算累计值,分别是cumsum函数,expanding函数,rolling函数。...1.不分组情况 cumsum函数 cumsum是pandas中专门用于计算累计和的函数。类似的函数还有cumprod计算累计积,cummax计算前n个值的最大值,cummin计算前n个值的最小值。...2.分组情况 cumsum函数 #添加pandas显示设置,显示所有行 pd.set_option('display.max_rows', None) orderamt = pd.read_excel...在pandas中学习了cumsum,expanding,rolling函数,最终都需要将累加值除以总计值得出累计百分比。

    2.6K10

    盘点66个Pandas函数,轻松搞定“数据清洗”!

    今天我们重新盘点66个Pandas函数合集,包括数据预览、数值数据操作、文本数据操作、行/列操作等等,涉及“数据清洗”的方方面面。...列操作 数据清洗时,会将带空值的行删除,此时DataFrame或Series类型的数据不再是连续的索引,可以使用reset_index()重置索引。...df.groupby("科目").mean() 由于pivot_table()数据透视表的参数比较多,就不再使用案例来演示了,具体用法可参考下图。...举例,我们仅选择具有数据类型'int64'的列。 df.select_dtypes("int64") 输出: isin()接受一个列表,判断该列中元素是否在列表中。...df["累计销量"] = df["销量"].cumsum() 输出: 注:cumprod()方法是指连乘,用于与连加一样,但使用频率较少。

    3.8K11

    基尼系数直接计算法_基尼系数简单的计算方法

    其中方法3:只适用于一些特殊情况。...0911/13/87990_408644530.shtml ————————————————————————————————- 方法一: #方法1 import numpy as np import pandas...(by = m).size().cumsum() # 得到每个分组中的最后一个数的位置在哪里 # size表示每个组里面有多少个元素 # cumsum之后显示每个组里面最后一个元素的位置 #就是图中分为点的位置...方法三 样本数量能够被分组数均匀分配的情况(仅适用于这个情况),更好的方法详见方法二。 数据的精确度可能还会受样本量和分组量的关系。...本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    1.4K30
    领券