首页
学习
活动
专区
圈层
工具
发布

按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...888] df = pd.DataFrame({'lv': lv, 'num': num}) def demean(arr): return arr - arr.mean() # 按照"lv"列进行分组并计算出..."num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值 df["juncha"] = df.groupby("lv")["num"].transform(demean) print(df...(输入是num列,输出也是一列),代码如下: import pandas as pd lv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3] num = [122, 111, 222...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

4.6K20

Pandas之实用手册

本篇通过总结一些最最常用的Pandas在具体场景的实战。在开始实战之前。一开始我将对初次接触Pandas的同学们,一分钟介绍Pandas的主要内容。...一、一分钟入门Pandas1.1 加载数据最简单方法之一是,加载csv文件(格式类似Excel表文件),然后以多种方式对它们进行切片和切块:Pandas加载电子表格并在 Python 中以编程方式操作它...最简单的方法是删除缺少值的行:fillna()另一种方法是使用(例如,使用 0)填充缺失值。1.5 分组使用特定条件对行进行分组并聚合其数据时。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...通过告诉 Pandas 将一列除以另一列,它识别到我们想要做的就是分别划分各个值(即每行的“Plays”值除以该行的“Listeners”值)。

1.3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas transform 数据转换的 4 个常用技巧!

    transform有4个比较常用的功能,总结如下: 转换数值 合并分组结果 过滤数据 结合分组处理缺失值 一....我们现在想知道每家餐厅在城市中所占的销售百分比是多少。 预期输出为: 传统方法是:先groupby分组,结合apply计算分组求和,再用merge合并原表,然后再apply计算百分比。...apply一样改变原表的结构,而是直接在原表的基础上再增加一列。...这样就可以一步到位,得到我们想要的格式。 然后,再计算百分比调整格式,搞定。...df[df.groupby('city')['sales'].transform('sum') > 40] 上面结果来看,并没有生成新的列,而是通过汇总计算求和直接对原表进行了筛选,非常优雅。

    81720

    一场pandas与SQL的巅峰大战(二)

    我定义了两个函数,第一个函数给原数据增加一列,标记我们的条件,第二个函数再增加一列,当满足条件时,给出对应的orderid,然后要对整个dataframe应用这两个函数。...') #进行分组排序,按照uid分组,按照ts2降序,序号默认为小数,需要转换为整数 #并添加为新的一列rk order['rk'] = order.groupby(['uid'])['ts2'].rank...首先我们要把groupby的结果索引重置一下,然后再进行遍历,和赋值,最后将每一个series拼接起来。我采用的是链接中的第一种方式。由于是遍历,效率可能比较低下,读者可以尝试下链接里的另一种方式。...后续可以使用我们之前学习的方法进行过滤或删除。这里省略这一步骤。 ? 八、数组元素解析 这一小节我们引入一个新的数据集,原因是我想分享的内容,目前的数据集不能够体现,哈哈。...可以看到最终我们得到的结果是字符串的形式,如果想要得到数值,可以再进行一步截取。 ?

    2.7K20

    数据分组

    数据分组就是根据一个或多个键(可以是函数、数组或df列名)将数据分成若干组,然后对分组后的数据分别进行汇总计算,并将汇总计算后的结果合并,被用作汇总计算的函数称为就聚合函数。...1.分组键是列名 分组键是列名时直接将某一列或多列的列名传给 groupby() 方法,groupby() 方法就会按照这一列或多列进行分组。...参数: ①分组键是列名: 单个列名直接写(按一列进行分组),多个列名以列表的形式传入(这就是按多列进行分 组)。...求众数、var 求方差、std 求标准差、quantile 求分位数 (2)按多列进行分组 按多列进行分组,只要将多个列名以列表的形式传给 groupby() 即可。...df.groupby(["客户分类","区域"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 无论分组键是一列还是多列,只要直接在分组后的数据进行汇总运算,就是对所有可以计算的列进行计算

    5.4K11

    Pandas中的这3个函数,没想到竟成了我数据处理的主力

    应用到DataFrame的每个Series DataFrame是pandas中的核心数据结构,其每一行和每一列都是一个Series数据类型。...上述apply函数完成了对四个数值列求取最大值,其中缺省axis参数为0,对应行方向处理,即对每一列数据求最大值。...②然后来一个按行方向处理的例子,例如根据性别和年龄,区分4类人群:即女孩、成年女子、男孩、成年男子,其中年龄以18岁为界值进行区分。...为实现这一数据统计,则首先应以舱位等级作为分组字段进行分组,而后对每个分组内的数据进行聚合统计,示例代码如下: ?...,其中前者对应apply的接收函数处理一行或一列,后者对应接收函数处理每个分组对应的子DataFrame,最后根据作用对象类型设计相应的接收函数,从而完成个性化的数据处理。

    3K10

    整理了 25 个 Pandas 实用技巧,拿走不谢!

    将字符型转换为数值型 让我们来创建另一个示例DataFrame: ? 这些数字实际上储存为字符型,导致其数据类型为object: ? 为了对这些列进行数学运算,我们需要将数据类型转换成数值型。...通过多种类型对DataFrame进行过滤 让我们先看一眼movies这个DataFrame: ? 其中有一列是genre(类型): ?...你可以看到,每个订单的总价格在每一行中显示出来了。 这样我们就能方便地甲酸每个订单的价格占该订单的总价格的百分比: ? 20. 选取行和列的切片 让我们看一眼另一个数据集: ?...对MultiIndexed Series进行重塑 Titanic数据集的Survived列由1和0组成,因此你可以对这一列计算总的存活率: ?...我们可以创建一个格式化字符串的字典,用于对每一列进行格式化。然后将其传递给DataFrame的style.format()函数: ?

    4.1K10

    数据导入与预处理-第6章-02数据变换

    pivot_table透视的过程如下图: 假设某商店记录了5月和6月活动期间不同品牌手机的促销价格,保存到以日期、商品名称、价格为列标题的表格中,若对该表格的商品名称列进行轴向旋转操作,即将商品名称一列的唯一值变换成列索引..., "A", "C", "A"], "data":[2, 4, 6, 8, 10, 1, 3, 5, 7]}) # 根据key列对df_obj进行分组 groupby_obj...: # 根据列表对df_obj进行分组,列表中相同元素对应的行会归为一组 groupby_obj = df_obj.groupby(by=['A', 'A', 'B', 'B', 'A', 'B'])...,但代表特征的数据不一定都是数值类型的,其中一部分是类别型的,例如,受教育程度表示方式有大学、研究生、博士等类别,这些类别均为非数值类型的数据。...实现哑变量的方法: pandas中使用get_dummies()函数对类别数据进行哑变量处理,并在处理后返回一个哑变量矩阵。

    20.8K20

    国外大神制作的超棒 Pandas 可视化教程

    加载数据 加载数据最方便、最简单的办法是我们能一次性把表格(CSV 文件或者 EXCEL 文件)导入。然后我们能用多种方式对它们进行切片和裁剪。 ? Pandas 可以说是我们加载数据的完美选择。...我们对之前的音乐.csv 文件进行判断,得到结果如下: ?...处理空值,Pandas 库提供很多方式。最简单的办法就是删除空值的行。 ? 除此之外,还可以使用取其他数值的平均值,使用出现频率高的值进行填充缺失值。...import pandas as pd # 将值填充为 0 pd.fillna(0) 5. 分组 我们使用特定条件进行分组并聚它们的数据,也是很有意思的操作。...这也是 Pandas 库强大之处,能将多个操作进行组合,然后显示最终结果。 6.

    3.2K20

    python数据分析——数据分类汇总与统计

    grouped.filter(lambda x: x['Sales'].sum() > 1000) # 过滤掉销售总额小于1000的组 转换操作:对每个分组进行转换操作,例如计算每个组的排名、百分位数等...使用read_csv导入数据之后,我们添加了一个小费百分比的列tip_pct: 如果希望对不同的列使用不同的聚合函数,或一次应用多个函数,将通过下面的例来进行展示。...首先,根据day和smoker对tips进行分组,然后采用agg()方法一次应用多个函数。 如果传入一组函数或函数名,得到的DataFrame的列就会以相应的函数命名。...首先,编写一个选取指定列具有最大值的行的函数: 现在,如果对smoker分组并用该函数调用apply,就会得到: top函数在DataFrame的各个片段调用,然后结果由pandas.concat...对于没有对应数值的单元格,Pandas会用NaN填充。 总结 Pandas的pivot()函数是一个非常有用的数据透视工具,可以根据指定的行、列和数值对数据进行重塑操作,方便数据分析和统计计算。

    3.3K10

    我的Python分析成长之路9

    1.数值型特征的描述性统计     数值型特征的描述性统计主要包括了计算数值型数据的完整情况、最小值、均值、中位数、最大值、四分位数、极差、标准差、方差、协方差和变异系数。     ...()) #对每个分组中的成员进行标记 16 print(group.size()) #返回每个分组的大小 17 print(group.min()) #返回每个分组的最小值 18 print(group.std...) #根据key1,key2分组 View Code 2.使用agg和aggregate方法聚合,能够将函数应用于每一列     DataFrame.agg(func,axis=0,*args...()) #对每个分组中的成员进行标记 15 print(group.size()) #返回每个分组的大小 16 print(group.min()) #返回每个分组的最小值 17 print(group.std...和 data2分别操作 View Code 3.使用apply方法聚合,apply方法类似于agg方法,能够将函数应用于每一列。

    2.6K11

    Pandas高级数据处理:自定义函数

    例如,对某一列的数据进行特定格式的转换,或者根据多列数据计算出新的结果等。(二)使用场景数据清洗在获取到原始数据后,可能会存在一些不符合要求的值,如缺失值、异常值等。...通过自定义函数,可以根据业务规则对这些值进行处理。特征工程在机器学习项目中,我们需要从原始数据中提取有用的特征。自定义函数可以帮助我们根据领域知识创建新的特征,提高模型的性能。...解决方案向量化操作:尽量利用Pandas提供的向量化操作来替代循环结构。例如,对于简单的数学运算,可以直接使用算术运算符对整个列进行操作,而不是编写一个逐行计算的自定义函数。...现在我们想要根据成绩计算每个学生在各个科目上的排名,并且还要对成绩进行等级划分(90分以上为优秀,80 - 89分为良好,60 - 79分为合格,低于60分为不合格)。...,然后通过groupby和apply方法对数据进行了分组处理。

    72210

    Pandas图鉴(一):Pandas vs Numpy

    Pandas[1]是用Python分析数据的工业标准。只需敲几下键盘,就可以加载、过滤、重组和可视化数千兆字节的异质信息。...当用于一般用途时,它们有以下缺点: 不太直观(例如,你将面临到处都是的常数); 与普通的NumPy数组相比,有一些性能问题; 在内存中连续存储,所以每增加或删除一列都需要对整个数组进行重新分配...2.按columns排序 如果我们需要使用权重列按价格列打破平局进行排序,那么对于NumPy来说却有些糟糕: 如果选择使用NumPy,我们首先按重量排序,然后再按价格应用第二次排序。...5.按列连接 如果想用另一个表的信息来补充一个基于共同列的表,NumPy几乎没有用。而Pandas更好,特别是对于1:n的关系。...Pandas连接有所有熟悉的 inner, left, right, 和 full outer 连接模式。 6.按列分组 数据分析中另一个常见的操作是按列分组。

    91450

    国外大神制作的超棒 Pandas 可视化教程

    然后我们能用多种方式对它们进行切片和裁剪。 ? Pandas 可以说是我们加载数据的完美选择。Pandas 不仅允许我们加载电子表格,而且支持对加载内容进行预处理。...我们对之前的音乐.csv 文件进行判断,得到结果如下: ?...处理空值,Pandas 库提供很多方式。最简单的办法就是删除空值的行。 ? 除此之外,还可以使用取其他数值的平均值,使用出现频率高的值进行填充缺失值。...import pandas as pd # 将值填充为 0 pd.fillna(0) 5.分组 我们使用特定条件进行分组并聚它们的数据,也是很有意思的操作。...这也是 Pandas 库强大之处,能将多个操作进行组合,然后显示最终结果。 6.从现有列中创建新列 通常在数据分析过程中,我们发现自己需要从现有列中创建新列,使用 Pandas 也是能轻而易举搞定。

    3.1K20

    快速提升效率的6个pandas使用小技巧

    '].mean(), inplace=True) 当然你还可以用最大最小值、分位数值等来替换缺失值。...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...'].head() 年龄是一段连续值,如果我们想对它进行分组变成分类特征,比如(60,老人),可以用cut方法实现: import sys...可以看到新增了一列ageGroup,用以展示年龄分组: df['ageGroup'].head() 6....在上图中,glob()在指定目录中查找所有以“ data_row_”开头的CSV文件。 glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。

    3.8K10
    领券