首页
学习
活动
专区
圈层
工具
发布

EMNLP 2021-多模态Transformer真的多模态了吗?论多模态Transformer对跨模态的影响

Motivation 视觉语言BERT模型扩展了BERT架构,以生成多模态输入的跨模态上下文表示。当对一系列下游任务进行微调时,这些模型已被证明是非常有效的。...如果测试过程中,去除某个模态的信息,对最终结果影响很大,那这个模态在最终预测的时候就是有用的;否则这个模态就是没用的。 多模态模型在预测时使用由多模态输入触发的跨模态激活。...这是原始的多模态设置,因此,有效使用多模态信息的模型应该表现最好。 Object: 在这里,作者只删除与对齐的文本短语相对应的图像区域,该模型仍然可以使用周围的视觉上下文特征 。...测试的模型显示了vision-for-language,而不是language-for-vision的结果,这一事实可能是多模态任务的积累,因为一些下游多模态任务需要强烈的 vision-for-language...▊ 作者简介 研究领域:FightingCV公众号运营者,研究方向为多模态内容理解,专注于解决视觉模态和语言模态相结合的任务,促进Vision-Language模型的实地应用。

2.5K20

腾讯发表多模态综述,什么是多模态大模型

多模态大语言模型(MLLM)是近年来兴起的一个新的研究热点,它利用强大的大语言模型作为大脑来执行多模态任务。...在本文中,追踪多模态大模型最新热点,讨论多模态关键技术以及现有在情绪识别上的应用。...,并且提供了现有主流的 26 个多模态大模型的简介,总结了提升多模态大模型性能的关键方法,多模态大模型脱胎于大模型的发展,传统的多模态模型面临着巨大的计算开销,而 LLMs 在大量训练后掌握了关于世界的...多模态大模型的整体架构可以被归类为如下图的五个部分,整个多模态大模型的训练可以被分为多模态理解与多模态生成两个步骤。...多模态理解包含多模态编码器,输入投影与大模型主干三个部分,而多模态生成则包含输出投影与多模态生成器两个部分,通常而言,在训练过程中,多模态的编码器、生成器与大模型的参数一般都固定不变,不用于训练,主要优化的重点将落在输入投影与输出投影之中

5.4K13
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    agent多模态学习

    二、多模态 Agent 的整体架构 一个完整的多模态 Agent 系统通常包含以下层次,其数据流如下: 用户多模态输入 → 多模态感知层 → 意图理解与规划层 → Agent 协作层 → 工具/环境交互层...→ 反馈与优化层 → 多模态输出 2.1 多模态感知层 (Multimodal Perception Layer) 作为系统的“感官”,负责将原始的多模态输入转换为结构化的特征向量。...四、多模态意图理解与任务规划 4.1 多模态意图识别 多模态意图识别旨在从用户的文本、图像、语音等多种输入中,准确判断其核心需求。...多模态分类模型:训练一个分类器,输入为多模态特征,输出为意图标签。 LLM 直接判断:利用 GPT-4V 等具备视觉能力的模型,直接分析多模态输入并输出意图。...七、多模态内容生成 7.1 文本生成 基于融合后的多模态上下文,LLM 可以生成更精准、丰富的文本回复。

    26010

    【多模态大模型】

    多模态大模型的核心能力 多模态大模型通过融合视觉、听觉、文本等多维度数据实现综合理解与生成。典型应用包括: 图像到文本:识别图片内容并生成描述、广告文案或诗歌。...跨模态检索:根据文本搜索相关图像/视频,或反之。 代表模型如GPT-4V(视觉增强版)、通义千问多模态版、文心一言(ERNIE-ViLG)均支持此类任务。...多模态对齐:模型将图像特征与文本语义空间对齐,生成候选描述。 输出优化:通过强化学习调整生成文本的流畅性与吸引力。...模型训练与优化要点 数据准备:需对齐的多模态数据集(如COCO-Captions、AudioSet)。...多模态大模型的应用需结合具体场景调整输入预处理与后处理逻辑,以达到最佳效果。

    16410

    多模态算法综述

    在UCF101数据集上达到了87%的准确率图片(2)Beyond Short Snippets: Deep Networks for Video Classification,尝试了多种多帧帧见融合策略如...自注意力至此视频理解算法演进到了Transformer的自监督网络架构,Transformer有两个优势,(1)更强的网络表征能力,(2)更容易设计自监督的训练任务,从而可以更有效的利用无标注数据,同时也更加注重多模态的内容理解...Vision-language Understanding with Contrastive Learning图片ALBEF包含一个图像编码器(ViT-B/16),一个文本编码器(BERT的前6层),以及一个多模态编码器...、多模态预训练方面提供大量的帮助,也给后来的文章提供了崭新的思路BLIP(Bootstrapping Language-Image Pre-training for Unified Vision-Language...BLIP采用了判断-生成任务的MED,可以作为单模态编码器,基于图像的文本编码器解码器采用了CapFilt的训练方法,降低噪声图文pair对训练造成的影响图片Mult-streamMult-stream

    3.1K30

    多模态认知计算

    进而,根据机器对多模态信息的认知模式,从多模态关联,跨模态生成和多模态协同这 三个方面对现有方法进行了梳理与总结,系统地分析了其中的关键问题与解决方案。...作为多模态认知计算的三条主 线,多模态关联,跨模态生成和多模态协同是提升机器认知能力的有效途径,已成为国内外科研人员密切关注的研究热点。...本文的组织框架如下:第二节,介绍了多模态关联任务的发展现状,分为多模态对齐,多模态感知和多模态检索三个部分,并进行分析与讨论;第三节,介绍了跨模态生成任务中的跨模态合成和跨模态转换方法,并进行分析与讨论...本节从多模态对齐,多模态关联和多模态检索三方面阐述多模态关联相关工作。其中,多模态对齐是一类基础性需求,如图像区域内容和文字词汇的语义对齐,视觉唇部运动与语音声素之间的时间对齐等。...人类可以轻松自如地对视,听,嗅,味,触等多模态感知进行归纳融合,并进行联合演绎,以做不同的决策和动作。在多模态认知计算中,多模态协同是指协调两个或者两个以上的模态数据,互相配合完成多模态任务。

    90830

    多模态+Recorder︱多模态循环网络的图像文本互匹配

    为了验证提出的选择式多模态循环神经网络的有效性,我们测试了该模型衍生出的多种网络结构,并在两个公开多模态数据库(Flickr30k和Microsoft COCO)上与当前最好方法进行了对比。...所提出的选择式多模态循环网络是一个动态模型,在每一时间步,它利用基于上下文的多模态注意机制选择图像文本中语义上相同的目标和词语,并计算其相似性作为图像文本的局部相似性,然后进行序列化融合得到全局相似性。...考虑到草图与自然图像可能存在多视角的特征表达,且不同的视角作用差异较大,我们提出了一种基于视角选择的多视角跨模态匹配算法。...我们在两个经典的细粒度草图-图像数据集上进行了大量的实验,结果表明所提出的方法可以有效利用多模态多视角特性并提升检索性能。...多模态搜索 网络上充斥着来自不同数据源的多模态多媒体数据;因此,亟需能够适应各种模态的信息检索系统,例如,在搜索“Dunkirk”电影时,应返回影评的相关文本数据、包含相关视频片段的视频数据、以及相关音频数据

    2.8K20

    多模态很简单,搞懂多模态,站在 AI 发展的最前沿

    现实世界的信息是多模态的(Multi-Modal),比如:视频 = 图像+声音+文本字幕自动驾驶 = 摄像头+激光雷达+毫米波雷达+GPS医疗AI = X光片+病历文本+基因数据 多模态融合(Multi-Modal...今天,我们就来深入拆解多模态融合的奥秘!多模态到底是什么? “模态” 就是信息的不同形式,比如:举个例子️:你在看一部电影,如果只看画面没声音,体验是不是很割裂?...所以,多模态融合就是让AI像人一样,把各种信息整合在一起,提高理解能力!多模态融合有哪些方式?...多模态融合一般分三大类:1️⃣ 早期融合(Early Fusion)—— 数据级融合 特点:在模型输入阶段,先把所有模态的数据合并成一个大“拼盘”,然后喂给模型。...多模态音乐治疗(多感官刺激睡眠疗法),包括声刺激抑制听觉警觉,动态光照重置生物钟,电磁刺激修复脑波节律,芳香分子安抚情绪,它们像精密齿轮般咬合,相辅相成,从不同感官通路“包抄”失眠的症结,让每一个失眠患者重拾安稳睡眠

    87110

    机器学习——多模态学习

    多模态学习:机器学习领域的新视野 引言 多模态学习(Multimodal Learning)是机器学习中的一个前沿领域,它涉及处理和整合来自多个数据模式(如图像、文本、音频等)的信息。...随着深度学习的蓬勃发展,多模态学习在许多应用领域中获得了广泛关注,例如自动驾驶、医疗诊断、智能助理等。本篇博客将深入探讨多模态学习的概念、方法以及一些代码示例,帮助读者更好地理解这一重要课题。...什么是多模态学习? 多模态学习旨在同时处理来自不同模态的数据,从而提高模型的表现能力。...多模态学习的挑战 多模态学习面临一些独特的挑战,例如: 模态间的异质性:不同模态数据的性质差异较大,例如图像是二维数据,文本是序列数据。 对齐问题:不同模态之间可能需要对齐,如图像和文本的时间同步。...多模态模型能够同时处理这些信息,从而理解视频的内容并进行分类、检索或生成描述。 结论 多模态学习是一个快速发展的领域,其潜力非常巨大。

    54510

    jQuery 事件对象、 jQuery 拷贝对象、jQuery 多库共存

    1. jQuery 事件对象 ​ jQuery 对DOM中的事件对象 event 进行了封装,兼容性更好,获取更方便,使用变化不大。事件被触发,就会有事件对象的产生。...jQuery 拷贝对象 ​ jQuery中分别为我们提供了两套快速获取和设置元素尺寸和位置的API,方便易用,内容如下。...jQuery 多库共存 ​ 实际开发中,很多项目连续开发十多年,jQuery版本不断更新,最初的 jQuery 版本无法满足需求,这时就需要保证在旧有版本正常运行的情况下,新的功能使用新的jQuery版本实现...,这种情况被称为,jQuery 多库共存。...语法 jQuery 解决方案: 1. 把里面的 符号 统一改为 jQuery。 比如 jQuery(''div'') 2.

    2.6K10

    多模态智能的发展

    文章分类在学习摘录和笔记专栏: 学习摘录和笔记(18)---《多模态智能的发展》 多模态智能的发展 1 多模态智能定义 多模态智能旨在融合多种模态的信息进行处理实现智能应用...将多模态信号统一到同一个向量空间中,从而实现了多模态信号的交叉处理。...多模态表示:由于其复杂的跨模态交互作用和各模态训练数据与测试数据之间可能存在的失配问题,仍然是一个具有挑战性的问题。...2 多模态智能融合的发展 融合是多模态研究中的一个关键问题,它将从不同单模态数据中提取的信息整合到一个紧凑的多模态表示中。...早期融合:即特征级融合,直接将从各类单模态数据中提取的特征组合在一起,以强调模态间的相互作用,从而抑制模态间的相互作用。

    30110

    浅析多模态机器学习

    多模态大模型就是指模型可以处理多种结构/类型的数据,例如GPT-4,它既可以处理你输入的文本,也可以处理你上传的图片。 那么,多模态到底意味着什么呢? 1. 什么是多模态?...3.1 多模态的数据表达 多模态数据的最大挑战是以一种方式总结来自多个模态(或视图)的信息,以便综合使用互补信息,同时过滤掉冗余的模态部分。...3.2 多模态机器翻译 多模态机器翻译涉及从多个模态中提取信息,基于这样的假设,附加的模态将包含有用的输入数据的替代视图。...3.3 多模态的对齐 多模态对齐是找到两种或更多模态之间的关系和对应。 为了对齐不同的模态,模型必须测量它们之间的相似度并处理长距离依赖关系。...多模态对齐是找到两种或更多模态之间的关系和对应,多模态融合可能是更重要的问题和挑战之一,协同学习是将学习或知识从一种模态转移到另一种模态的挑战。

    75121

    基于深度学习的多模态音乐可视化-多模态音乐治疗

    目前,大多数的研究都集中在听觉和视觉模态相结合的多模式情绪识别上,然而,来自中枢神经系统,例如 EEG 信号和外部行为,例如眼球运动的多模态结合已被证明是对情绪识别更加有效的方法。...为了结合用户的内部大脑活动和外部潜意识行为,本文提出了使用 6 个 EEG 电极和眼动追踪眼镜来识别人类情绪的多模态框架 EmotionMeter。本文提出的情绪识别系统的框架如图 1 所示。...多模态生成系统LLM将音频特征转化为"暗红色漩涡伴随铜管乐器闪烁"等具象描述,Text-to-Image模型据此生成风格化图像,最后通过DAIN(深度感知视频插帧)算法实现24fps流畅输出,确保鼓点与视觉变化误差...对于模态融合,本文比较两种方法:1)特征级融合和2)多模态深度学习。对于特征级融合,EEG 和眼动数据的特征向量直接连接成一个较大的特征向量作为 SVM 的输入。...表 III 显示了每种单一模式(眼球运动和脑电图)和两种模态融合方法的表现,图 9 显示了使用不同模态的准确度盒形图。

    24110

    剑桥 | 发布多模态检索器,赋能多模态大模型RAG应用

    PreFLMR模型是一个通用的预训练多模态知识检索器,可用于搭建多模态RAG应用。...多模态知识提取器的知识 “召回能力” 直接决定了大模型在回答推理时能否获得准确的专业知识。...图 2:PreFLMR 模型同时在多项任务上取得极佳的多模态检索表现,是一个极强的预训练基底模型。 2....尤其是在多模态任务中,用户的问询(Query)包含复杂场景信息,压缩至一维向量极大抑制了特征的表达能力。PreFLMR 继承并改进了 FLMR 的结构,使其在多模态知识检索中有得天独厚的优势。...实验结果表明对于后期交互多模态检索系统,增加视觉编码器的参数带来的回报更大。

    50510

    MORA:LORA引导缺失模态多模态疾病诊断 !

    对于微调多模态预训练模型,Lee等人[6]首先引入了多模态提示的概念,它使用MAPs(即在使用缺失模态时提高性能的提示)来提高训练和测试集中缺失模态时的性能。...为了保留多模态输入的格式以便在多模态预训练模型中进行多模态,作者只是将空字符串或像素(例如,对于文本或图像)分配给缺失模态的病人,并生成,。因此,整个患者数据集可以被改革为。...因此,对于子集,其相应的模态意识适应如下: 其中,,。选定的适应性将被插入到多模态预训练模型的第一个块中,以提高对缺失模态的鲁棒性。...这在实际多模态学习中是合理的:一种模态的重要性大于其他模态。因此,提高这种重要模态的鲁棒性至关重要。从表中可以看出,当文本严重缺失时,MoRA的性能明显更好。...4 Conclusion 在这篇论文中,作者提出了一种多模态预训练模型用于疾病诊断。 为了解决这些挑战,作者提出MoRA用于微调具有缺失模态的多模态预训练模型。

    70510
    领券