首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas进行数据分析

    下面展示一些在Excel里面常用的功能,看看其在Python里面具体是怎么实现的,Python处理数据用到的主要是pandas库,这也是《利用python进行数据分析》整本书介绍的对象。...(index=15,inplace=True) #删除行 data 删除行 删除列 data.drop(columns='new_column_1') #返回删除后的新数据,原始数据不变 data.drop...(columns=['new_column_1','new_column_2']) #返回删除后的新数据,原始数据不变 data.drop(columns=['new_column_1','new_column...(keep='first') #保留第1个,一般结合排序使用 data[['性别','消费频次']].drop_duplicates(keep='last') #保留最后1个,一般结合排序使用 #根据...性别、消费频次 2列进行去重 data.drop_duplicates(subset=['性别','消费频次'],keep='first') 数据去重 数据排序 相对Excel方便很多 data data.sort_values

    1.4K20

    python pandas dataframe函数_Python Pandas dataframe.ne()用法及代码示例

    参考链接: 带有Pandas的Python:带有示例的DataFrame教程 Python是进行数据分析的一种出色语言,主要是因为以数据为中心的python软件包具有奇妙的生态系统。...Pandas是其中的一种,使导入和分析数据更加容易。  Pandas dataframe.ne()函数使用常量,序列或其他按元素排列的 DataFrame 检查 DataFrame 元素的不等式。...用法: DataFrame.ne(other, axis=’columns’, level=None)  参数:  other:系列,DataFrame或常量  axis:对于系列输入,轴与系列索引匹配...# importing pandas as pd  import pandas as pd  # Creating the first dataframe  df1=pd.DataFrame({"A":...范例2:采用ne()用于检查两个datframe是否不相等的函数。一个 DataFrame 包含NA值。

    1.6K00

    python数据处理 tips

    在本文中,我将分享一些Python函数,它们可以帮助我们进行数据清理,特别是在以下方面: 删除未使用的列 删除重复项 数据映射 处理空数据 入门 我们将在这个项目中使用pandas,让我们安装包。...# df = df.drop(columns="Unnamed: 13") # or df.drop(columns="Unnamed: 13", inplace = True) df.head()...inplace=True将直接对数据帧本身执行操作,默认情况下,它将创建另一个副本,你必须再次将其分配给数据帧,如df = df.drop(columns="Unnamed: 13")。...df = df.drop_duplicates(keep="first") 我们可以使用len(df)或df[df.duplicated(keep=False)]检查是否删除了重复项。...现在你已经学会了如何用pandas清理Python中的数据。我希望这篇文章对你有用。如果我有任何错误或打字错误,请给我留言。

    4.4K30

    十分钟掌握Pandas基本操作(上)

    为了更好地掌握数据科学必备库Pandas的基本使用,本文通过精灵宝可梦的数据集实战,我们一起过一遍Pandas的基本操作,文中的代码都附有注释,并给出了结果的配图。 话不多说,我们开始吧!...导入pandas库,并读取csv文件 import pandas as pd df=pd.read_csv('pokemon/Pokemon.csv') 查看DataFrame信息 df.info()...) df.rename(columns={'Type 1':'Type1','Type 2':'Type2'}) df.columns=df.columns.str.replace(' ','') 数据观察...(['Type1'],keep='first') # 去除相同的Type1的数据,仅保留第一个 数据条件查询 df[df['Name']=='Squirtle'] # 查看杰尼龟的数据 df[df['Type1...官方文档 ——END—— 推荐阅读 我用Python在网上复制文字的几种实用方法 混淆矩阵及其可视化 一次免费代理ip的爬取实战

    81612

    请教个问题,我想把数据中名字的重复值删掉,只保留年纪大的怎么整呢?

    一、前言 国庆期间在Python白银交流群【谢峰】问了一个Pandas处理的问题,提问截图如下: 代码如下: import pandas as pd data = [{'name': '小明', 'age...(subset=['name'], keep='first') print(data) data = data.sort_values(by='age', ascending=False).drop_duplicates...0,ascending=True, inplace=False, na_position=‘last’) 参数说明 参数 说明 by 指定列名(axis=0或’index’)或索引值(axis=1或’columns...’) axis 若axis=0或’index’,则按照指定列中数据大小排序;若axis=1或’columns’,则按照指定索引中数据大小排序,默认axis=0 ascending 是否按指定列的数组升序排列...这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    1.7K10

    Python批量处理Excel数据后,导入SQL Server

    2.6 完整调用代码 1、前言 紧接昨天的文章Windows下载安装配置SQL Server、SSMS,使用Python连接读写数据,我们已经安装和配置好了sqlserver,也成功测试了如何利用Python...; pandas:处理各种数据,内置很多数据处理方法,非常方便; xlrd xlwt:读写excel文件,pandas读写excel会调用他们。...我的想法是,首先调用pandas的sort_values函数将所有数据根据日期列进行升序排序,然后,调用drop_duplicates函数指定按SOID列进行去重,并指定keep值为last,表示重复数据中保留最后一行数据...(subset=['SOID #'], keep='last', inplace=True) return data 2.5 其他需求 “多个Excel数据对应一张数据库的表 ” 可以写一个字典...] columns = [columns_a, columns_b, columns_c] flag = 0 # 列选择标记 # 遍历字典 合并相关excel 然后处理数据后,存入sql for

    4.7K30
    领券