首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言计算Logistic的efect和OR值以及置信区间

各位小伙伴,大家好,我是邓飞,今天介绍一下,如何使用R语言进行logistic分析,并且计算OR值和置信区间。...在二分类 GWAS(基因组关联研究)分析中,OR 值用于衡量某个基因变异(或基因型)与某个疾病(或特征)之间的关联程度。...一般情况下,OR 值越大表示基因变异和疾病间的关联程度越强。 在二分类 GWAS 分析中,通过计算每个基因变异的OR值,可以评估其与疾病之间的关联程度,从而推断基因变异对疾病风险的贡献。...) summary(m1) # 计算OR值 exp(coef(mod)) ## 置信区间 exp(confint(mod)) # 一步到位:OR值和置信区间 library(questionr) odds.ratio...(mod) 结果: 手动计算OR值: 一步到位的OR值和置信区间:

1.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R语言怎么计算两个比值的 p 值?

    有朋友问两个比值数据,怎么求他们的 p 值? 例如,两组人,分别接受两种药物治疗,想知道疗效之间是否有差异,计算 p 值。 接受药物 1 治疗,30 人,其中 20 人有疗效,10 人没有疗效。...直观上判断,药物 1 的疗效要好(20:10 vs 10:20),但与药物 2 的疗效相比,是否达到了显著性的差异了呢?...这种情况可以用 fisher 检验来探索,R 代码如下: fisher.test(matrix(c(20, 10, 10, 20), ncol = 2)) ## ## Fisher's Exact...另外判断差异时,不仅要看 p 值,还要看 OR 值,这里的 OR 值 = 3.901234,其 95 % 置信区间为 1.212812 - 13.467843,是有意义的。...OR 的置信区间不能跨过 1,否则 p 值再小也无意义。

    7110

    R语言怎么计算两个比值的 p 值?

    有朋友问两个比值数据,怎么求他们的 p 值? 例如,两组人,分别接受两种药物治疗,想知道疗效之间是否有差异,计算 p 值。 接受药物 1 治疗,30 人,其中 20 人有疗效,10 人没有疗效。...直观上判断,药物 1 的疗效要好(20:10 vs 10:20),但与药物 2 的疗效相比,是否达到了显著性的差异了呢?...这种情况可以用 fisher 检验来探索,R 代码如下: fisher.test(matrix(c(20, 10, 10, 20), ncol = 2)) ## ## Fisher's Exact...另外判断差异时,不仅要看 p 值,还要看 OR 值,这里的 OR 值 = 3.901234,其 95 % 置信区间为 1.212812 - 13.467843,是有意义的。...OR 的置信区间不能跨过 1,否则 p 值再小也无意义。

    81010

    机器学习与统计学:R方代表什么?和P值的关系是什么?

    R方的公式是: ? 上图中分母和分子的左侧从数字上,可以理解为样本点到均值线的差平方和。分子的右侧代表预测结果与样本均值差的平方和。...根据图像,我们其实可以将: 分子理解成: 样本标签本身的var - 将模型结果纳入考量后的var 分母理解成: 不考虑预测结果,样本标签本身的var 如果我们的拟合曲线与模型均值相同,那么我们的 =0...该F检验和P值出场了 我其实一开始只想知道p-value在线性方程组里是怎么计算出来了,后来查到了是必须要通过F值才能够得到. F检验的公式形象化的理解就是: ?...那么这个式子又怎么得到我们的P值呢? P值是检验样置信度的一个指标,一般我们认为p<=0.05时(一般选择这个显著水平),模型的信号不存在偶然性,模型的结果可靠 ?...dof, expctd = chi2_contingency(obs, correction = False) p 0.59094761107842753 总结: R^2可以量化模型响应变量与因变量间的关系强弱

    7.7K20

    谈谈那些R处理结果中非常小的p值

    这周转录组专辑将讨论,使用R语言进行分析,结果出现p值非常小的情况。这个问题来自上上周推文的留言区,而我们将从此入手进行探索,且并不局限在差异表达分析得到的p值。...战战兢兢的我只能向老师汇报了,老师说DEseq2与edgeR算法上比较相似,可能对于这些p值为零的基因判定比较松,给的p为零值。...但是第三种差异分析的方式limma就不是,它用芯片分析的方法去做,给p值的判定比较严格。于是如获至宝的我,按照老师的指导进行了p值窜天高现象的探索与分析。...edgeR火山图 limma火山图 可以发现不同的工具对p值有着不同的控制程度,在DESeq2\edgeR中我们甚至可以发现p值为0的情况,那么p值小到什么程度会变成0呢,跳出p值,这么小的数在R中计算有意义吗...p值小于该领域内常用截断阈值,如基因组中常见的5E-08、1E-05 ---- 小结 在这篇推文中,我们讨论了以下几个问题: 如何检查自己机器的机器精度 R中p值小到什么程度会变成0 多大的数在R中计算有意义

    3.3K30

    R语言中固定与随机效应Meta分析 - 效率和置信区间覆盖

    p=6330 Meta分析是综合现有证据的重要工具。它通常用于医学和临床环境中,以评估关于治疗或暴露对感兴趣结果的影响的现有证据。基本思想是将先前研究中感兴趣的影响的估计汇总在一起。...固定与随机效应Meta分析 我们使用哪种方法会影响我们获得的估计总体效果及其相应的95%置信区间,因此决定哪种方法适合在任何给定情况下使用是很重要的。...R中的模拟研究 为了进行模拟研究,我们将模拟30项研究的重复荟萃分析。 然后,我们执行固定效应和随机效应荟萃分析。...} ci覆盖范围 mean((fixedCI [,1] 1)) mean((randomCI [,1] 1)) R代码的最后几行计算...1000次模拟中固定和随机效应估计的平均值和SD,然后计算95%置信区间的覆盖范围。

    1.3K20

    跟着Nature Communication学作图:R语言ggpubr包画箱线图并添加显著性P值

    Challenger-Deep-Microbes 论文里提供了大部分图的数据和代码,很好的学习材料,感兴趣的同学可以找来参考,今天的推文重复一下论文中的Figure1b 论文中提供的代码是用ggpubr这个R包实现的...,如果比较着急要结果可以使用这个R包来作图,如果是学习为目的,还是推荐ggplot2的基础 部分数据集截图 image.png 读取数据集 dat<-read.delim("data/20220602...Slope","Deep sea", "Mariana Water"), ordered=TRUE) table(dat02$group) 作图代码 p1...=7)"))+ theme(axis.text = element_text(size=10,family="serif"))+ stat_compare_means(comparisons=p1...p1 image.png 试一下论文中提供的拼图代码 library(cowplot) aligned_plotsp1, p1,align="h") ggdraw(

    72120

    左手用R右手Python系列8——数据去重与缺失值处理

    因为最近事情略多,最近更新的不勤了,但是学习的脚步不能停,一旦停下来,有些路就白走了,今天就盘点一下R语言和Python中常用于处理重复值、缺失值的函数。...在R语言中,涉及到数据去重与缺失值处理的函数一共有下面这么几个: unique distinct intersect union duplicated #布尔判断 is.na()/!...is.na() #缺/非缺失值 na.rm=TRUE/FALSE #移除缺失值 na.omit(lc) #忽略缺失值 complete.cases() #完整值 mydata与补集: dplyr中提供了两个函数可以执行交集与补集操作: duplicated(mydata$B) #返回重复对象的布尔值 mydata[!...------------ 本文小结: ------------ R语言: 数值去重: unique distinct intersect union duplicated 缺失值处理: is.na()/

    1.9K40

    R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间

    因此,我们要导出预测的置信区间,而不是观测值,即下图的点 > r=glm(dist~speed,data=cars,family=poisson)> P=predict(r,type="response...这些值的计算基于以下计算 在对数泊松回归的情况下, 让我们回到最初的问题。 线性组合的置信区间 获得置信区间的第一个想法是获得置信区间 (通过取边界的指数值)。...首先,我们可以得到估计量的方差 因此,如果我们与回归的输出进行比较, > summary(reg)$cov.unscaled(Intercept) speed(Intercept) 0.0066870446...很容易得出线性组合的标准偏差, 一旦我们有了标准偏差和正态性,就得出了置信区间,然后,取边界的指数,就得到了置信区间 > segments(30,exp(P2$fit-1.96*P2$se.fit),+...+1.96*P2$se.fit)1173.9341> P1$fit+1.96*P1$se.fit1172.9101 bootstrap技术 第三种方法是使用bootstrap技术基于渐近正态性(仅50个观测值

    1.5K31
    领券