首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

最小二乘法,残差,线性模型-线性回归

什么是最小二乘法 最小二乘法公式是一个数学的公式,在数学上称为曲线拟合,此处所讲最小二乘法,专指线性回归方程。 最小二乘法(又称最小平方法)是一种数学优化技术。...线性模型 线性模型的表达式很简单: 线性模型形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。...此外,由于直观表达了各个特征在预测中的重要性,因此线性模型有很好的可解释性(comprehensibility)。 为什么需要 (Bias Parameter)?...类似于线性函数中的截距,在线性模型中补偿了目标值的平均值(在训练集上的)与基函数值加权平均值之间的差距。...基于均方误差最小化来进行模型求解的方法称为“最小二乘法”(least square method)。在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小。

20310

最小二乘法求解线性回归模型

机器学习线性回归模型 线性回归(linear regression)是一种线性模型,它假设输入变量 x 和单个输出变量 y 之间存在线性关系 具体来说,利用线性回归模型,可以从一组输入变量 x 的线性组合中...许多功能更为强大的非线性模型可在线性模型的基础上通过引入层级结构或高维映射而得。...最小二乘法求解 基于均方误差最小化来进行模型求解的方法称为“最小二乘法”(least square method) 它的主要思想就是选择未知参数,使得理论值与观测值之差的平方和达到最小。...我们假设输入属性(特征)的数目只有一个: 在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧式距离之和最小。...求解线性回归 求解w和b,使得 最小化的过程,称为线性回归模型的“最小二乘参数估计”。

59420
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    简单线性回归模型(最小二乘法代码实现)

    简单线性回归模型(最小二乘法代码实现) 0.引入依赖 import numpy as np import matplotlib.pyplot as plt 1.导入数据(data.csv) points... = np.genfromtxt('data.csv', delimiter=',') # points # 提取 points 中的两对数据,分别作为 x, y # points[0][0]  等价于...2.定义损失函数 # 损失函数是模型系数的函数,还需要传入数据的 x,y def compute_cost(w, b, points):     total_cost = 0     M = len(points...)     # 逐点计算【实际数据 yi 与 模型数据 f(xi) 的差值】的平方,然后求平均     for i in range(M):         x = points[i, 0]         ...y = points[i, 1]         total_cost += (y - w * x - b) ** 2     return total_cost / M 3.定义模型拟合函数 # 先定义一个求均值的函数

    2.2K30

    模型之母:简单线性回归&最小二乘法

    模型之母:简单线性回归&最小二乘法 关于作者:Japson。某人工智能公司AI平台研发工程师,专注于AI工程化及场景落地。持续学习中,期望与大家多多交流技术以及职业规划。...线性回归模型看起来非常简单,简单到让人怀疑其是否有研究价值以及使用价值。但实际上,线性回归模型可以说是最重要的数学模型之一,很多模型都是建立在它的基础之上,可以被称为是“模型之母”。...从图像中我们可以发现,产量和成本之间,存在着一定的线性关系,似乎是在沿着某条直线上下随机波动。 ?...回到简单线性回归问题,目标: 已知训练数据样本、 ,找到和的值,使 尽可能小 这是一个典型的最小二乘法问题(最小化误差的平方) 通过最小二乘法可以求出a、b的表达式: 0x02 最小二乘法 2.1...最终我们通过最小二乘法得到a、b的表达式: 0xFF 总结 本章中,我们从数学的角度了解了简单线性回归,从中总结出一类机器学习算法的基本思路: 通过分析问题,确定问题的损失函数或者效用函数; 然后通过最优化损失函数或者效用函数

    3K20

    logistics判别与线性模型中的4个问题

    :特征缩放和泛化能力(下篇) 0 引言 之前说过,机器学习的两大任务是回归和分类,上章的线性回归模型适合进行回归分析,例如预测房价,但是当输出的结果为离散值时,线性回归模型就不适用了。...如果我们使用前一章的线性回归模型,可以认为>0.5的结果看成1,的结果看成0,便可以得到下列的转换函数: ?...可以很明显的看出,该函数将实数域映射成了[0,1]的区间,带入我们的线性回归方程,可得: ? 于是,无论线性回归取何值,我们都可以将其转化为[0,1]之间的值,经过变换可知: ? 故在该函数中, ?...过拟合的可能性不只取决于参数个数和数据,也跟模型架构与数据的一致性有关。此外对比于数据中预期的噪声或错误数量,跟模型错误的数量也有关。...6 类别不均衡问题 想象我们在做一个预测罕见病A的机器学习模型,但是该病十分罕见,我们一万个数据中只有8个病例,那么模型只需要将所有的数据都预测为无病,即可达到99.92%的超高预测成功率,但是显然这个模型不符合要求

    49300

    多元线性回归:机器学习中的经典模型探讨

    1.2 多元线性回归的发展 多元线性回归的研究历史悠久,可以追溯到20世纪初。随着统计学和计算机科学的发展,特别是计算能力的提升,基于最小二乘法的多元线性回归逐渐成为主流方法。...近年来,随着机器学习的兴起,多元线性回归被广泛应用于各种数据分析任务,并与其他机器学习模型相结合,成为数据科学中的重要工具。...2.1 模型定义 多元线性回归模型的数学表达式为: y:因变量 β0​:截距 β1​,β2​,......,βn​:自变量的系数 x1​,x2​,...,xn​:自变量 ϵ:误差项 2.2 最小二乘法 最小二乘法是求解多元线性回归模型参数的常用方法。...应用示例 在一个房价预测模型中,我们可能使用以下特征: 房屋面积 卧室数量 卫生间数量 地理位置(可能转化为数值) 4.2 销售预测 在市场营销中,多元线性回归可以帮助企业分析广告支出、市场活动、季节因素等对销售额的影响

    60110

    【组合数学】排列组合 ( 排列组合内容概要 | 选取问题 | 集合排列 | 集合组合 )

    文章目录 一、排列组合内容概要 二、选取问题 三、集合排列 四、环排列 五、集合组合 参考博客 : 【组合数学】基本计数原则 ( 加法原则 | 乘法原则 ) 【组合数学】集合的排列组合问题示例 ( 排列...三、集合排列 ---- n 元集 S , 从 S 集合中 有序 , 不重复 选取 r 个元素 , 该操作称为 S 集合的一个 r- 排列 , S 集合的 r- 排列记作...= 1 四、环排列 ---- n 元集 S , 从 S 集合中 有序 , 不重复 选取 r 个元素 , S 集合的 r- 环排列数 = \dfrac{P(n,r)}{r} = \dfrac...r 个不同的线性排列 , 相当于同一个环排列 ; 一个环排列 , 从任意位置剪开 , 可以构成 r 种不同的线性排列 ; 五、集合组合 ---- n 元集 S , 从 S 集合中 无序..., 不重复 选取 r 个元素 , 该操作称为 S 集合的一个 r- 组合 , S 集合的 r- 组合记作 C(n, r) C(n,r)=\begin{cases} \dfrac{P

    1.9K00

    机器学习篇(2)——最小二乘法概念最小二乘法

    前言:主要介绍了从最小二乘法到 概念 顾名思义,线性模型就是可以用线性组合进行预测的函数,如图: image.png 公式如下: image.png image.png 误差是独立同分布的...原因:中心极限定理 实际问题中,很多随机现象可以看做众多因素的独立影响的综合反应,往往服从正态分布 写出损失函数: image.png 求解: image.png 求得的杰刚好和线性代数中的解相同...最小二乘法 用投影矩阵可以解决线代中方程组无解的方法就是最小二乘法,其解和上述解一样 image.png 例子:用最小二乘法预测家用功率和电流之间的关系 数据来源:http://archive.ics.uci.edu...测试集上R2: 0.13627227933073027 rmse: 4.766714115205903 image.png 关于R2的概念,他是衡量数据集是否为线性的依据。...image.png 模型模拟的越好,越接近于一

    2K50

    R语言析因设计分析:线性模型中的对比

    对比度可用于对线性模型中的处理进行比较。 常见的用途是使用析因设计时,除析因设计外还使用控制或检查处理。在下面的第一个示例中,有两个级别(1和2)的两个处理(D和C),然后有一个对照 处理。...此处使用的方法是方差的单向分析,然后使用对比来检验各种假设。 在下面的第二个示例中,对六种葡萄酒进行了测量,其中一些是红色,而有些是白色。我们可以比较的治疗中通过设置对比,并进行F检验红酒组。...0.66667 0.10954 6.086 < 0.001 ***T4vsC == 0 1.73333 0.10954 15.823 < 0.001 *** 一组治疗中的全局...我们将想知道红酒组中的处理是否对响应变量有影响。这种方法之所以具有优势,是因为仍可以在红酒中进行事后比较。...本研究调查了 ###一组3种治疗方法中的效果 ###结果与multcomp的结果相同 问题:红葡萄酒和白葡萄酒之间有区别吗?

    1.1K00

    pytorch中的线性回归

    pytorch中的线性回归 简介: 线性回归是一种基本的机器学习模型,用于建立输入特征与连续输出之间的关系。...它假设输入特征与输出之间的关系是线性的,并且尝试找到最佳的线性拟合,以最小化预测值与真实值之间的差距。...通常使用最小化均方误差(Mean Squared Error,MSE)来衡量预测值与真实值之间的差距。 实现线性回归 在 PyTorch 中,我们可以利用自动求导功能和优化器来实现线性回归模型。...绘制数据点 plt.scatter(x_data, y_data) # 绘制回归线 plt.plot(x_data, model(x_data).detach().numpy(), 'r-', label...,线性回归模型的方程为: Y = 1.9862X + 0.0405 其中: Y 是预测的因变量值, - X 是自变量的值。

    5100

    机器学习常用算法——线性回归

    线性回归 线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。...在这个例子中,Y 是体重(因变量),x 是身高(自变量),a 和 b 分别为斜率和截距,可以通过最小二乘法获得。...一元线性回归 一元线性回归模型是 Y= a*x + b,求解一元线性回归模型的本质就是求解参数 a 和 b 的过程,最常用的方法为最小二乘法。...真实情况未必如此,现实世界中的曲线关系都是通过增加多项式实现的,其实现方式和多元线性回归类似。在 scikit-learn 中,我们使用 PolynomialFeatures 构建多项式回归模型。...当模型出现拟合过度的时候,并没有从输入和输出中推导出一般的规律,而是记忆训练集的结果,这样在测试集的测试效果就不好了。 代码地址

    70530

    线性回归 均方误差_线性回归模型中随机误差项的意义

    大家好,又见面了,我是你们的朋友全栈君。 刚开始学习机器学习的时候就接触了均方误差(MSE,Mean Squared Error),当时就有疑惑,这个式子是怎么推导的,但是因为懒没有深究。...今天看到了唐宇迪老师的机器学习课程,终于理解他是怎么推导的了。一定要一步一步看下去,别看他公式这么多,随便认真看一下就能理解的! 问题描述 我们有工资和年龄两个特征,要预测银行会贷款给我们多少钱?...似然函数 似然函数用于参数估计,即求出什么样的参数跟我们给出的数据组合后能更好的预测真实值,有: (6) 取(6)式对数,将连乘转化为加法,这也是一般似然函数的求解方法: (7) 将(7...)式展开并化简有: (8) (8)式等式右侧的第一项为一个常量,似然函数要取最大值,因而第二项越小越好,有: (9) (9)式相当于最小二乘法的式子,即是均方误差的表达式。...下一步我们要解出 θ θ θ的表达式 4.

    97320

    线性回归模型中的正规方程推导

    本文对吴恩达老师的机器学习教程中的正规方程做一个详细的推导,推导过程中将涉及矩阵和偏导数方面的知识,比如矩阵乘法,转值,向量点积,以及矩阵(或向量)微积分等。...求θ的公式 在视频教程中,吴恩达老师给了我们一个如下图红色方框内的求参数 θ 的公式 ? 先对图中的公式简单的说明一下。...公式中的 θ 是 n+1 元列向量,y 是m元列向量,X 是一个 m 行 n+1 列的矩阵。...具体到上图中的例子,X 和 y在上图已经有了,它们都是已知的值,而未知的 可以通过图中的公式以及X和y的值求出来,最终得到假设函数(hypothesis function)为 假设函数和代价函数 多元线性回归的假设函数和代价函数如下...和(3)代入(1)式有 如前所述,J(θ)取得最小值时其对于θ导数为0,于是有 推出 使用矩阵乘法的分配律有 移项 等式两边同时在左边乘以 ,为什么要在左边乘呢,因为矩阵乘法有顺序 因为矩阵的逆与矩阵相乘得到单位矩阵

    2.3K40

    MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化

    设计最小二乘法拟合模型中,对问题进行数值模拟。最后基于最小二乘原理,在约束条件下建立炉温曲线的多目标优化模型。...系统不能直接有关变量之间的直接关系一一函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统即建立微分方程模型。...最小二乘法模型: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。...在总体计划中,用线性规划模型解决问题的思路是,在背景需求条件约束下,求允许的最大的传送带过炉速度。当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。...模型 检验 使用有限分差法中的 空间反演法,把炉温曲线当做已知条件,结合给出的传送带运行速度来确定数学模型中拟合的预测值分布和真实值内容要点:结果分析、检验;模型检验及模型修正;结果表示如图该预测值与真实值的方差

    29420

    详解Python中的算术乘法、数组乘法与矩阵乘法

    (1)算术乘法,整数、实数、复数、高精度实数之间的乘法。 ? (2)列表、元组、字符串这几种类型的对象与整数之间的乘法,表示对列表、元组或字符串进行重复,返回新列表、元组、字符串。 ?...需要特别注意的是,列表、元组、字符串与整数相乘,是对其中的元素的引用进行复用,如果元组或列表中的元素是列表、字典、集合这样的可变对象,得到的新对象与原对象之间会互相干扰。 ? ? ?...(3)numpy数组与数字num相乘,表示原数组中每个数字与num相乘,返回新数组,类似的规则也适用于加、减、真除、整除、幂运算等。 ?...、要么其中一个为1、要么其中一个对应位置上没有数字(没有对应的维度),结果数组中该维度的大小与二者之中最大的一个相等。...在这种情况下,第一个数组的最后一个维度和第二个数组的倒数第二个维度将会消失,如下图所示,划红线的维度消失: ? 6)numpy矩阵与矩阵相乘时,运算符*和@功能相同,都表示线性代数里的矩阵乘法。

    9.5K30

    FPGA 中的有符号数乘法

    FPGA中乘法器是很稀缺的资源,但也是我们做算法必不可少的资源。...7系列及之前的FPGA都是25x18的DSP,UltraScale中是27x18,我们可以通过调IP Core的方式或者原语的方式来进行乘法操作。在里面可以设置有符号还是无符号数乘法。 ? ?   ...当然,我们也可以直接使用*符合来进行乘法,对于无符号的乘法 reg [7:0] ubyte_a; reg [7:0] ubyte_b; (* use_dsp48="yes" *) output reg[...,我们知道,两个8bits的无符号数乘法,结果的位宽是16bits,但对于两个8bits有符号数的乘法,只要两个数不同时为-128,即二进制0b1000_0000,那么输出结果的高两位都是符号位,我们只需要取低...因此,如果我们可以保证两个输入的乘数不会同时为有符号数所能表示的负数最小值,那么乘法结果的高两位都是符号位,只取其中一位即可。

    2K10

    从模型源码梳理TensorFlow的乘法相关概念

    [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 目录 [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 0x00 摘要 0x01 矩阵乘积 1.1 matmul product...就是向量乘法,即线性代数中的矩阵之间相乘的运算。...1.4 tf.multiply 此函数是:两个矩阵中对应元素各自相乘,即逐元素操作。逐元素操作是指把x中的每一个元素与y中的每一个元素逐个地进行运算。就是哈达玛积。...向量乘法采用的乘法是线性代数中的矩阵之间相乘的运算。 1.6 DIN使用 在DIN使用如下: # 7....一个可以表现这个优势的应用场景就是在结合具有不同长度的特征向量的时候。为了拼接具有不同长度的特征向量,我们一般都先填充输入向量,拼接这个结果然后进行之后的一系列非线性操作等。

    1.7K20

    学习一个PPT:育种中混线性模型的应用

    混合线性模型的公式和假定 可以指定多个随机因子以及他们的分布,可以指定残差的矩阵结构,非常灵活。 ? 5. 空间分析 主要是残差结构的定义。 ? ? 6. 增广试验描述 ? 7....育种中 为何要考虑亲缘关系? ? 14. 系谱数据的亲缘关系示例 ? 15. 模拟系谱和表型数据 ? 16. 系谱数据模型3效果最好 ? 17. RCBD应用混线性模型 ? 18....G矩阵的计算方法 ? 28. 草莓试验站介绍 ? 29. 草莓中实施GS的目标 草莓中不同性状如何选择GS模型 使用交叉验证检验预测效果 将GS流程整合到育种流程中 评估GS的效果 ? 30....GS实施的结论 GS不同方法和研究中的结论一致(Bayes B稍微好一点) 除了TC这个性状,其它性状的准确性都超过了0.6 准确性和遗传力线性相关 随着参考群候选群世代间隔增大,准确性下降 基因与环境互作对于...从RCBD到增广设计 从线性模型到混线性模型 从独立基因型到关联基因型(系谱) 从独立残差到关联残差(空间分析) 从ABLUP到GBLUP 从低密度芯片到高密度芯片 从GBLUP到贝叶斯 从单地点到多点的

    88210
    领券