把数据集( dataset )的行或列映射为系列(series) 用户可以使用 seriesLayoutBy 配置项,改变图表对于行列的理解。...DOCTYPE html> 把数据集( dataset )的行或列映射为系列(...{type: 'bar', seriesLayoutBy: 'row'}, // 这几个系列会在第二个直角坐标系中,每个系列对应到 dataset 的每一列。
Spark SQL模块的一个很酷的功能是能够执行SQL查询来执行数据处理,查询的结果将作为数据集或数据框返回。...DataFrames 数据框是一个分布式的数据集合,它按行组织,每行包含一组列,每列都有一个名称和一个关联的类型。换句话说,这个分布式数据集合具有由模式定义的结构。...与DataFrame类似,DataSet中的数据被映射到定义的架构中。它更多的是关于类型安全和面向对象的。 DataFrame和DataSet之间有几个重要的区别。...这意味着,如果数据集被缓存在内存中,则内存使用量将减少,以及SPark在混洗过程中需要通过网络传输的字节数减少。...创建数据集 有几种方法可以创建数据集: · 第一种方法是使用DataFrame类的as(symbol)函数将DataFrame转换为DataSet。
国产化·电科金仓 该国产化厂商奖项由电科金仓投递并参与金猿组委会×数据猿×上海大数据联盟共同推出的《2025大数据产业年度国产化优秀代表厂商》榜单/奖项评选。...核心国产化技术及产品方面的突破 金仓数据库创新采用“融合数据库”架构,立足于用户场景需求的“四个一体化”体系,从数据协议兼容、应用场景承载、多模数据处理到开发运维管理,直击数据迁移难、场景割裂、技术栈冗余等痛点...AI协同下的“四个一体化”能力体系 1.多数据协议一体化兼容 打破数据开发的语言壁垒,融合型数据库在高度兼容标准SQL、Oracle、MySQL、SQL Server等主流关系型数据库语法生态的基础上,...3.多模数据一体化处理 通过单一数据库系统实现对关系型、时序型、地理空间型、文档型、向量型、图等多种数据模型的统一支持。...多模型数据融合的核心价值在于“依托单一数据库系统,降低为不同数据模型采用独立数据库所带来的应用开发、数据同步及运维等环节的成本”,从而为应用提供统一且实时的高质量数据源。
Spark RDD 分布式弹性数据集 rdd是一种弹性分布式的数据集,它代表着不可变的数据元素,可以被分区并行处理。 rdd是一个粗粒度的数据生成方式和流转迭代计算方式的描述。...它可以通过稳定的存储器或者从其他RDD生成,它并不需要急着进行转换,只需要在特定的rdd进行一次性的数据的迭代流转。rdd记录着自己的依赖关系,以防在数据丢失时可以通过“血缘”关系再次生成数据。...用户也可以自己选择在经常重用的rdd进行数据落地,放置丢失后重做。 rdd的特性总结: 显式抽象。将运算中的数据集进行显式抽象,定义了其接口和属性。...由于数据集抽象的统一,从而可以将不同的计算过程组合起来进行统一的 DAG 调度。 基于内存。...修改了 Scala 的解释器,使得可以交互式的查询基于多机内存的大型数据集。进而支持类 SQL 等高阶查询语言。
来源:DeepHub IMBA本文约1800字,建议阅读9分钟本文将介绍如何使用内存映射文件加快PyTorch数据集的加载速度。...但是如果数据本地存储,我们可以通过将整个数据集组合成一个文件,然后映射到内存中来优化读取操作,这样我们每次文件读取数据时就不需要访问磁盘,而是从内存中直接读取可以加快运行速度。...实现自定义数据集 接下来,我们将看到上面提到的三个方法的实现。...基准测试 为了实际展示性能提升,我将内存映射数据集实现与以经典方式读取文件的普通数据集实现进行了比较。这里使用的数据集由 350 张 jpg 图像组成。...从下面的结果中,我们可以看到我们的数据集比普通数据集快 30 倍以上: 总结 本文中介绍的方法在加速Pytorch的数据读取是非常有效的,尤其是使用大文件时,但是这个方法需要很大的内存,在做离线训练时是没有问题的
本文将介绍如何使用内存映射文件加快PyTorch数据集的加载速度 在使用Pytorch训练神经网络时,最常见的与速度相关的瓶颈是数据加载的模块。...但是如果数据本地存储,我们可以通过将整个数据集组合成一个文件,然后映射到内存中来优化读取操作,这样我们每次文件读取数据时就不需要访问磁盘,而是从内存中直接读取可以加快运行速度。...对于更多的介绍请参考Numpy的文档,这里就不做详细的解释了 基准测试 为了实际展示性能提升,我将内存映射数据集实现与以经典方式读取文件的普通数据集实现进行了比较。...这里使用的数据集由 350 张 jpg 图像组成。...从下面的结果中,我们可以看到我们的数据集比普通数据集快 30 倍以上: 总结 本文中介绍的方法在加速Pytorch的数据读取是非常有效的,尤其是使用大文件时,但是这个方法需要很大的内存,在做离线训练时是没有问题的
reference映射简介 在本文中,我们首先构建一个reference,然后演示如何利用该reference来注释新的查询数据集。...数据集预处理 出于本示例的目的,我们选择了通过四种技术生成的人类胰岛细胞数据集:CelSeq (GSE81076) CelSeq2 (GSE85241)、Fluidigm C1 (GSE86469) 和...为了方便起见,我们通过 SeuratData 包分发此数据集。元数据包含四个数据集中每个细胞的技术(技术列)和细胞类型注释(细胞类型列)。...然后,我们将剩余的数据集映射到该参考上。我们首先从四种技术中选择cell,并在不进行整合的情况下进行分析。...在数据传输中,Seurat 有一个选项(默认设置)将引用的 PCA 结构投影到查询上,而不是使用 CCA 学习联合结构。我们通常建议在 scRNA-seq 数据集之间投影数据时使用此选项。
数据地图---使用Training Dynamics来映射和诊断数据集 最近看到一篇很有趣的文章,发表于EMNLP-20,作者团队主要来自AllenAI: Dataset Cartography: Mapping...——training dynamics,来发掘数据集的一些性质,比如不同样本的难易程度,从而帮助我们更好地训练模型。...下面是使用SNLI数据集绘制的数据地图: 上图大致可以分为三个区域: easy-to-learn:是confidence较高,但是variability较低的区域 hard-to-learn:是confidence...,基本都出现在hard区域 以上就差不多是论文的内容了,其实很简单,但是这样的一个数据地图,其实可以帮助我们进一步观察数据集的特点,帮助我们从data-centric的角度去做出改进。...笔者自己也跑了一下在SST2数据集上的数据地图,分别使用一个大模型和一个小模型,发现差异明显: 下图是使用RoBERTa-large的效果: 下图则是使用BERT-tiny的效果: 还是挺有意思的,
01 何为RDD RDD(Resilient Distributed Dataset),弹性分布式数据集,是Spark core中的核心数据抽象,其他4大组件都或多或少依赖于RDD。...、分区数可变、计算可容错、内存硬盘存储位置可变 分布式:大数据一般都是分布式的,意味着多硬件依赖、多核心并行计算 数据集:说明这是一组数据的集合,或者说数据结构 ?...,当转换结果是多个元素时(例如转换为列表),再将其各个元素展平,实现一对多映射 groupByKey,适用于RDD中每个元素是一个包含两个元素的元组格式,例如(key, value)形式,进而将相同key...常用的action算子包括如下: collect,可能是日常功能调试中最为常用的算子,用于将RDD实际执行并返回所有元素的列表格式,在功能调试或者数据集较小时较为常用,若是面对大数据集或者线上部署时切忌使用...' ')) # flatMap将原来的句子用空格分割,并展平至单个词 # rdd1 = ['this', 'is', 'spark', 'this', 'is', 'RDD'] rdd2 = rdd1
基本概要 Spark 是一种快速、通用、可扩展的大数据分析引擎,是基于内存计算的大数据并行计算框架。...RDD 的全称是 Resilient Distributed Dataset,意思是“弹性分布式数据集”。...RDD 是 Spark 对于分布式数据的统一抽象,它定义了一系列分布式数据的基本属性与处理方法。...flatMap 操作在逻辑上可以分成两个步骤:映射和展平。...接下来我们需要对这个“二维数组”做展平,也就是去掉内层的嵌套结构,把“二维数组”还原成“一维数组”。
本篇文章目标是处理在数据集中存在列分隔符或分隔符的特殊场景。对于Pyspark开发人员来说,处理这种类型的数据集有时是一件令人头疼的事情,但无论如何都必须处理它。...|Rao|30|BE 数据集包含三个列" Name ", " AGE ", " DEP ",用分隔符" | "分隔。...使用spark的Read .csv()方法读取数据集: #create spark session import pyspark from pyspark.sql import SparkSession...()读取数据集 #create df=spark.read.option(‘delimiter’,’|’).csv(r’/delimit_data.txt’,inferSchema=True...我们已经成功地将“|”分隔的列(“name”)数据分成两列。现在,数据更加干净,可以轻松地使用。
本文处理的场景如下,hive表中的数据,对其中的多列进行判重deduplicate。...1、先解决依赖,spark相关的所有包,pom.xml spark-hive是我们进行hive表spark处理的关键。...; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function...; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction...; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.hive.HiveContext
Spark 的核心是建立在统一的抽象弹性分布式数据集(Resiliennt Distributed Datasets,RDD)之上的,这使得 Spark 的各个组件可以无缝地进行集成,能够在同一个应用程序中完成大数据处理...一、RDD概念 RDD 是 Spark 提供的最重要的抽象概念,它是一种有容错机制的特殊数据集合,可以分布在集群的结点上,以函数式操作集合的方式进行各种并行操作。...每个 RDD 可以分成多个分区,每个分区就是一个数据集片段。一个 RDD 的不同分区可以保存到集群中的不同结点上,从而可以在集群中的不同结点上进行并行计算。...在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。...*、本文参考 Spark RDD是什么? spark原理:概念与架构、工作机制
介绍 Hudi支持上层Hive/Presto/Spark查询引擎,其中使用Spark读取Hudi数据集方法非常简单,在spark-shell或应用代码中,通过 spark.sqlContext.read.format...("org.apache.hudi").load便可加载Hudi数据集,本篇文章分析具体的实现。...而Hudi也自定义实现了 org.apache.hudi/ hudi来实现Spark对Hudi数据集的读写,Hudi中最重要的一个相关类为 DefaultSource,其实现了 CreatableRelationProvider...而过滤主要逻辑在 HoodieROTablePathFilter#accept方法中, HoodieROTablePathFilter会处理Hudi数据集和非Hudi数据集,对于Hudi数据集而言,会选取分区路径下最新的提交的...总结 当使用Spark查询Hudi数据集时,当数据的schema新增时,会获取单个分区的parquet文件来推导出schema,若变更schema后未更新该分区数据,那么新增的列是不会显示,否则会显示该新增的列
于是,团队以此为突破口,从网上收集了一个包含 2.5 亿个图像文本对的数据集,在这一数据集上训练一个包含 120 亿个参数的自回归 Transformer。...DALL-E 模型生成的样本(第二行)和以前研究中的样本对比 图文对数据集平替款,真香 DALL-E 这一模型的成功,也用事实验证了,大规模训练数据对于一个模型的重要性。...平民炼丹师想要 DALL-E 的同款数据集,恐怕是难以获得了,但是大牌都有平替版(平价替代版)。...虽然 OpenAI 表示,他们的训练数据集尚不会公开,但他们透露,数据集中包括 Google 发表的 Conceptual Captions 数据集。...除了基于图像和文本内容的单独过滤之外,还过滤掉那些文本标记都无法映射到图像内容的数据。 使用通过 Google Cloud Vision APIs 提供的分类器为图像分配类标签。
在机器学习或深度学习中,会经常遇到需要把多个向量或矩阵按某轴方向进行合并的情况,也会遇到展平的情况,如在卷积或循环神经网络中,在全连接层之前,需要把矩阵展平。...这节介绍几种数据合并和展平的方法。 1....矩阵展平 import numpy as np nd15=np.arange(6).reshape(2,-1) print(nd15) #按照列优先,展平。...print("按列优先,展平") print(nd15.ravel('F')) #按照行优先,展平。...print("按行优先,展平") print(nd15.ravel()) 打印结果: [[0 1 2] [3 4 5]] 按列优先,展平 [0 3 1 4 2 5] 按行优先,展平 [0 1 2 3
Parquet 使用记录粉碎和组装算法,该算法优于嵌套命名空间的简单展平。 Parquet 经过优化,可以批量处理复杂数据,并具有不同的方式来实现高效的数据压缩和编码类型。...这种方法最适合那些需要从大表中读取某些列的查询。 Parquet 只需读取所需的列,因此大大减少了 IO。...由于每一列的数据类型非常相似,每一列的压缩很简单(这使得查询更快)。可以使用几种可用的编解码器之一来压缩数据;因此,可以对不同的数据文件进行不同的压缩。...Parquet 帮助其用户将大型数据集的存储需求减少了至少三分之一,此外,它还大大缩短了扫描和反序列化时间,从而降低了总体成本。...Spark读写parquet文件 Spark SQL 支持读取和写入 Parquet 文件,自动捕获原始数据的模式,它还平均减少了 75% 的数据存储。
RDD 中 , 然后 按照空格分割开 再展平 , 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表中每个元素的 键 Key 为单词 , 值 Value 为 数字 1 , 对上述...sparkContext.textFile("word.txt") # 内容为 ['Tom Jerry', 'Tom Jerry Tom', 'Jack Jerry'] 然后 , 通过 flatMap 展平文件..., 先按照 空格 切割每行数据为 字符串 列表 , 然后展平数据解除嵌套 ; # 通过 flatMap 展平文件, 先按照 空格 切割每行数据为 字符串 列表 # 然后展平数据解除嵌套 rdd2 =..., 先按照 空格 切割每行数据为 字符串 列表 # 然后展平数据解除嵌套 rdd2 = rdd.flatMap(lambda element: element.split(" ")) print("...查看文件内容展平效果 : ", rdd2.collect()) # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda element
对数据库查询,将得到一个数据集: rs=AccessDB.GetData("select * from log where f_code='600259' limit 5,5") 结果的每行对应一个元组...数据集是一个游标,只能用一次,如果需要反复查询,可以转换为列表再操作。 ? 但是,如果只能通过逐行循环来处理,就和以前的程序没啥区别了。...我设定了一个小目标:合计一下第8列(金额),看Python能否有所不同。 尝试1:用map取出第8列,再用reduce合并。 ?
②返回值 返回一个新数组,其中包含映射函数返回的每个数组的展平元素。...③用途 array.flatMap()方法不仅将嵌套数组展平,还允许你指定一个映射函数来转换数组中的每个元素,然后再进行展平。...array.flat()仅负责展平数组,不涉及元素的转换;array.flatMap()结合了映射和展平,允许你在展平之前对元素进行转换。...其中Infinity可以将数组展平到一维。 array.flatMap()接受一个映射函数作为参数。如果要进行跨纬度展平(比如三维展平成一维),需要使用嵌套或者链式调用。...,你需要将这些数据展平以便于进一步处理。