1、顺序查找(Sequential Search)的查找过程为:从表中最后一个记录开始,逐个进行记录的关键字和给定值的比较,若某个记录的关键字和给定值比较相等,则查找成功,找到所查记录。
然而在某些情况下,查找表中的个关键字被查找的概率都是不同的。例如在UI设计师设计图片的时候,不同的设计师和不同的项目经理需求不同,有些项目经理喜欢暖色调,那么暖色调就会应用的多一些,有的项目经理比较喜欢冷色调,之后你的设计采用冷色调的概率也是比较大的。
PHP数据结构(十二)——静态查找表 (原创内容,转载请注明来源,谢谢) 一、概念 1、查找表:由同一类型数据元素构成的集合。 2、静态查找表:只进行查找(包括确认元素是否存在、查找元素的值),不进行增加和删除操作。 3、动态查找表:与静态查找表相对应,除了查找,还会进行插入与删除操作。 4、关键字:用于标识一个数据元素,如果对应的数据元素唯一,则为主关键字。如果若干个关键字可以唯一确定一个数据元素,称这些关键字为次关键字。
对于二分查找存在一定的优 & 缺点,所以衍生出2种二分查找的变式方法:插值查找 & 斐波那契查找。具体如下:
查找表 是由同一类型的数据元素 构成的集合,它是一种以查找为“核心”,同时包括其他运算的非常灵活的数据结构。
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
顺序查找 成功的平均查找长度为 (n+1)/2,也就是说查找的平均次数约为表长的一半,优点就是算法简单适应面广,对查找的表结构没什么要求,缺点就是查找长度太长效率低下。
需和指定key进行比较的关键字的个数的期望值,称为查找算法在查找成功时的平均查找长度。
基本概念 查找表:由同一种类型的数据元素(记录)组成 静态查找表:只需要查找算法 动态查找表:除了查找,还需要增删改查数据元素 关键字:唯一标识数据元素的数据项 常见的查找算法 折半查找 概念 折半查找又称二分查找,仅适用于有序的顺序表,不能用链表。 算法 //查找算法 int binary_search(seqlist L,Elemtype key) { int low,high=L.TableLen-1,mid; while(low<=high) { mid=(low<=high)/2; if(L.el
查找表是由同一类型的数据元素构成的集合。例如电话号码簿和字典都可以看作是一张查找表。 在查找表中只做查找操作,而不改动表中数据元素,称此类查找表为静态查找表;反之,在查找表中做查找操作的同时进行插入数据或者删除数据的操作,称此类表为动态查找表。
上次在面试时被面试官问到学了哪些数据结构,那时简单答了栈、队列/(ㄒoㄒ)/~~其它就都想不起来了,今天有空整理了一下几种常见的数据结构,原来我们学过的数据结构有这么多~
1、查找表(Search Table)是由同一类型的数据元素(或记录)构成的集合。
PHP数据结构(十三) ——动态查找表(二叉排序树) (原创内容,转载请注明来源,谢谢) 一、概念 1、动态查找表特点 当对动态查找表进行查找时,如果查找成功,会返回查找结果;如果查找失败,会对动态查找表插入查找结果,并且根据各类动态查找表的性质,对表进行动态调整。 2、二叉排序树(又称二叉查找树) 二叉排序树或者是一棵空树,或者满足以下特性: 1)若左子树非空,则左子树的所有节点小于根节点; 2)若右子树非空,则右子树的所有节点大
列表:由同一类型的数据元素组成的集合。 关键码:数据元素中的某个数据项,可以标识列表中的一个或一组数据元素。 键值:关键码的值。 主关键码:可以唯一地标识一个记录的关键码。 次关键码:不能唯一地标识一个记录的关键码。
版权声明:本文为博主原创文章,转载请注明博客地址: https://blog.csdn.net/zy010101/article/details/83033069
红黑树在日常的使用中比较常用,例如Java的TreeMap和TreeSet,C++的STL,以及Linux内核中都有用到。之前写过一篇文章专门介绍红黑树的理论知识,本文将给出红黑数的C语言的实现代码,后序章节再分别给出C++和Java版本的实现。还是那句话,三种实现原理相同,择其一了解即可;若文章有错误或不足的地方,望不吝指出! 目录 1.红黑树的介绍 2.红黑树的C实现(代码说明) 3.红黑树的C实现(完整源码) 4.红黑树的C测试程序 更多内容:数据结构与算法系列 目录 (01) 红黑树(一)之 原理和算法详细介绍 (02) 红黑树(二)之 C语言的实现 (03) 红黑树(三)之 Linux内核中红黑树的经典实现 (04) 红黑树(四)之 C++的实现 (05) 红黑树(五)之 Java的实现 (06) 红黑树(六)之 参考资料
(1)和次优二叉树相对,二叉排序树是一种动态树表。其特点是,树点的结构通常不是一次生成的,而是在查找过程中,当树中不存在关键字等于给定值的结点时再进行插入。
第八章 查找 定义:查找就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录)。 8.2 查找概论 查找表(Search table):是由同一类型的数据元素构成的集合。 关键字(key):是数据元素中某个数据项的值,又称为键值。 若此关键字可以唯一的标识一个记录,则称此关键字为主关键字(Primary key)。 对于那些可以识别多个数据元素的关键字,我们称为次关键字(Secondary key)。 查找表按照操作方式来分有两大种:静态查找表和动态查找表 静态查找表(Static
上篇博文我重点介绍了八大内部排序,这篇博文(数据结构与算法的最后一课)重点介绍查找,我们依旧沿用上篇博文的风格,先简单介绍,再以例子重点讲解。
在写STL的时候,我就意识到了缺少了一篇数据结构。 提到数据结构,很多学生可能会想到学校里上的数据结构的课,教的那些数组、链表、栈、队列、树、图等
树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。先从整体上认识下二叉树及其他各种树的区别和用途。
顺序查找的基本思想:从表的一端开始,顺序扫描线性表,依次扫描到的结点关键字和给定的K值相比较,若当前扫描到的结点关键字与 K相等,则查找成功;若扫描结束后,仍未找到关键字等于 K的结点,则查找失败。
特点是物理位置上的邻接关系来表示结点的逻辑关系,具有可以随机存取表中的任一结点的,但插入删除不方便
做数据库开发的程序员,可能每天都会处理各种各样的查询sql,这个就是查找(Search)。通过查询记录主键字段(即主关键码)或其它非唯一字段(即次关键码)找到所需要的记录。 如果在查找的过程中,不改变原始数据(的数据结构),则这种查找称为静态查找(Static Search);如果找不到,需要向数据库里插入记录(或者找到了,需要从数据库里删除),这种在查找过程中需要动态调整原始数据(的数据结构),这种查找称为动态查找(Dynamic Search). 被查找的数据结构(比如数据库中的某张表)称为查找表,用于
对于任意一个序列,从一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。
本书介绍的“后台开发”指的是“服务端的网络程序开发”,从功能上可以具体描述为:服务器收到客户端发来的请求数据,解析请求数据后处理,最后返回结果。
1.所有能被输入到计算机中,且能被计算机处理的符号的总称。如:实数、整数、字符(串)、图形和声音等。
接下来是第四关,考验学员的学习能力。这一关会开放史莱克学院的主网给他们查询资料,只是他们的所有行为都会经过反作弊系统的审查。
数据结构是一种组织和存储数据的方式,它涉及如何在计算机中存储和访问数据的方法和技术。数据结构可以用来解决不同类型的问题,包括搜索、排序、插入和删除等操作。常见的数据结构包括数组、链表、栈、队列、树、图等。不同的数据结构有不同的特点和适用场景,选择合适的数据结构可以提高算法的效率和性能。
PHP数据结构(十六)——B树 (原创内容,转载请注明来源,谢谢) 一、概述 B树在很多地方被称为“B-树”,因为B树的原英文名称为B-tree,很多人把其译作B-树,但是它的正确读法是B树,因此下面都用B树来表示B-tree。B树是一种多路平衡查找树,其对于加快查找速度具有重要意义。 1、定义 一棵m阶的B树(不是指m叉树,m是这棵树的度,下同),或者是空树,或者是满足下列特性的m叉树: 1)树中每个节点至多m个子树,m-1个关键字。 2)根节点若不
二叉查找树定义 每棵子树头节点的值都比各自左子树上所有节点值要大,也都比各自右子树上所有节点值要小。 二叉查找树的中序遍历序列一定是从小到大排列的。 二叉查找树节点定义 /// /// 二叉查找树节点 /// public class Node { /// /// 节点值 /// public int Data { get; set; } /// /// 左
字典树,又称单词查找树,是一个典型的一对多的字符串匹配算法。“一”指的是一个模式串,“多”指的是多个模板串。字典树经常被用来统计、排序和保存大量的字符串。它利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较。
PHP数据结构(十四) ——键树(双链树) (原创内容,转载请注明来源,谢谢) 一、概念 键树又称为数字查找树,该树的度>=2,每个节点不是存储关键字,而是存储组成关键字的一个字符或数值的一个数字。
查找表: 由同一类型的数据元素(记录)组成的集合。 记作:ST={a1,a2,…,an} ● 关键字: 可以标识一个记录的数据项 ● 主关键字: 可以唯一地标识一个记录的数据项 ● 次关键字: 可以识别若干记录的数据项
数据结构与算法,是大学中计算机相关专业里的一门必修的基础课,当时学习的时候并不能列其中的知识点,毕业之后随着对计算机专业知识的了解加深,才意识到其重要性,今天我就来研究一番。
1、排序树——特点:所有结点“左小右大 2、平衡树——特点:所有结点左右子树深度差≤1 3、红黑树——特点:除了具备二叉查找树的特性外还有5个特性以致保持自平衡。 4、字典树——由字符串构成的二叉排序树 5、判定树——特点:分支查找树(例如12个球如何只称3次便分出轻重) 6、带权树——特点:路径带权值(例如长度) 7、最优树——是带权路径长度最短的树,又称 Huffman树,用途之一是通信中的压缩编码。
只要你打开电脑,就会涉及到查找技术。如炒股软件中查股票信息、硬盘文件中找照片、在光盘中搜DVD,甚至玩游戏时在内存中查找攻击力、魅力值等数据修改用来作弊等,都要涉及到查找。当然,在互联网上查找信息就更加是家常便饭。查找是计算机应用中最常用的操作之一,也是许多程序中最耗时的一部分,查找方法的优劣对于系统的运行效率影响极大。因此,本篇讨论一些查找方法。
不知道前端小伙伴们都了解“红黑树”吗?本瓜,之前听是听过,但是它到底是干嘛的,并不十分清楚。在认识了平衡二叉树、AVL 树之后,现在已经来到了这个节点,必须来看下“红黑树”了!
那么有了线性结构,我们为什么还需要非线性结构呢? 答案是为了高效地兼顾静态操作和动态操作。大家可以对照各种数据结构的各种操作的复杂度来直观感受一下。
现实世界的存储,我们使用的工具和建模。每种数据结构有自己的优点和缺点,想想如果Google的数据用的是数组的存储,我们还能方便地查询到所需要的数据吗?而算法,在这么多的数据中如何做到最快的插入,查找,删除,也是在追求更快。 我们Java是面向对象的语言,就好似自动档轿车,C语言好似手动档吉普。数据结构呢?是变速箱的工作原理。你完全可以不知道变速箱怎样工作,就把自动档的车子从 A点 开到 B点,而且未必就比懂得的人慢。写程序这件事,和开车一样,经验可以起到很大作用,但如果你不知道底层是怎么工作的,就永远只能开车,既不会修车,也不能造车。当然了,数据结构内容比较多,细细的学起来也是相对费功夫的,不可能达到一蹴而就。我们将常见的数据结构:堆栈、队列、数组、链表和红黑树 这几种给大家介绍一下。
栈是一种操作受限的数据结构,只支持入栈和出栈操作。后进先出是它最大的特点。(特定的数据结构是对特定场景的抽象)
树的应用同样非常广泛,小到文件系统,大到因特网,组织架构等都可以表示为树结构,而在我们前端眼中比较熟悉的 DOM 树也是一种树结构,而 HTML 作为一种 DSL 去描述这种树结构的具体表现形式。
对于二叉查找树而言,每次操作的最坏时间复杂度是O(N)。(当树退化为链表的时候)。为了解决这个问题,我们给树附加了一个平衡条件。平衡条件限制了任何节点的深度都不能过深。其中一种限制条件是:一颗二叉查找树的左子树和右子树的高度差不能超过1,这个条件限制产生了AVL树。
红黑树是算法领域中一个著名的二叉查找树实现,它能够以较小的开销保持二叉查找树的平衡。具备平衡性质的二叉查找树能够极大地提高节点的查询速度。举个形象一点的例子:从一个十亿节点的红黑树中查找一个节点,所需要的查询次数不到 30,这不禁让人感叹算法的魅力。
b)降低子线程优先级,使用Thread或者HandlerThread时,调用Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND)设置优先级,否则仍然会降低程序响应,因为默认Thread的优先级和主线程相同
领取专属 10元无门槛券
手把手带您无忧上云