~ 废话太多了,今天的教程是环形dendrogram,颜值还是不错的。 大家来一起看看吧!...6igraph创建网络对象 net <- graph_from_data_frame(edges, vertices=vertices) net 7最终绘图 ggraph(net, layout = '<em>dendrogram</em>
mygraph <- graph_from_data_frame(myedges1, vertices=myvertices,directed = T) ggraph(mygraph, layout = '<em>dendrogram</em>...输入3: ggraph(mygraph, layout = 'dendrogram') + geom_edge_diagonal2(aes(colour =node.group)) +
- mtcars[,1:7] plot(as.phylo(hclust(dist(new_mtcars))),type="fan") 2. circlize和dendextend 用circlize_dendrogram...hc = hclust(dist(new_mtcars), method = 'complete') %>% as.dendrogram %>% set('labels_cex', c(0.8)) #...dend %>% color_branches(k=4) %>% color_labels pdf('~/test.pdf', width=8, height = 8) circlize_dendrogram...B1F100', '#FF7400', '#FFAA00', '#1240AB', '#009999') labels_colors(hc) = test_colors[mtcars$gear[order.dendrogram...(hc)]] pdf('~/test2.pdf', width=8, height = 8) circlize_dendrogram(hc, labels_track_height = NA, dend_track_height
dend = reorder(as.dendrogram(hclust_1), wts=exprTable_t$Tet3) col_cluster <- as.hclust(dend) pheatmap...按某个基因的表达由大到小排序 dend = reorder(as.dendrogram(hclust_1), wts=exprTable_t$Tet3*(-1)) col_cluster <- as.hclust...按分支名字(样品名字)的字母顺序排序 library(dendextend) col_cluster % as.dendrogram %>% sort %>% as.hclust...梯子形排序:最小的分支在左侧 col_cluster % as.dendrogram %>% ladderize(FALSE) %>% as.hclust pheatmap(...按特征值排序 样本量多时的自动较忧排序 sv = svd(exprTable)$v[,1] dend = reorder(as.dendrogram(hclust_1), wts=sv) col_cluster
import pandas as pd from matplotlib import pyplot as plt from scipy.cluster.hierarchy import dendrogram...(z1) # 用最长距离法 plt.subplot(2, 2, 2) plt.title('最长距离法') z2 = linkage(data, 'complete') dendrogram(z2)...# 用类平均法 plt.subplot(2, 2, 3) plt.title('类平均法') z3 = linkage(data, 'average') dendrogram(z3) # 用重心法...plt.subplot(2, 2, 4) plt.title('重心法') z4 = linkage(data, 'centroid') dendrogram(z4) plt.show() 使用sklearn...from sklearn.cluster import AgglomerativeClustering def plot_dendrogram(model, **kwargs): # 可视化
1,20, by = 1) hclust_mat$order <- index pheatmap(test, cluster_rows = hclust_mat) reorder 函数 reorder.dendrogram...require(gridExtra) # reorder 1 index <- order(rowSums(test), decreasing = TRUE) dend = reorder(as.dendrogram...show_colnames = FALSE) # reorder 2 index <- order(rowSums(test), decreasing = FALSE) dend = reorder(as.dendrogram
dend % dist() %>% # 计算距离 hclust() %>% # 聚类 as.dendrogram() # 转换一下 画图 其实你直接plot也是可以出图的...3) %>% # 水平绘制 plot(horiz=TRUE, axes=FALSE) # 添加一条竖线 abline(v = 350, lty = 2) # 添加矩形框 rect.dendrogram...) tanglegram图 # 准备2个聚类树对象,使用不同的方法 d1 % dist() %>% hclust( method="average" ) %>% as.dendrogram...() d2 % dist() %>% hclust( method="complete" ) %>% as.dendrogram() # 自定义每个聚类树,放到一个列表中
image.png 去掉枝长,开口朝下 ggtree(tree1,aes(color=Species),branch.length = "none")+ layout_dendrogram()+...image.png 自定义颜色 ggtree(tree1,aes(color=Species),branch.length = "none")+ layout_dendrogram()+ theme...rep("WW",439)) ggtree(tree1,aes(color=Species),branch.length = "none")+ layout_dendrogram
这样得到的 inferCNV 的 dendrogram文件就不能使用之前的代码读取: infercnv.dend <- read.dendrogram(file = "inferCNV_output/...infercnv.observations_dendrogram.txt") 而是需要使用ape包的read.tree函数,如下所示: myTree <- ape::read.tree(file =..."inferCNV_output/infercnv.observations_dendrogram.txt") u 我们可以看到读入的 inferCNV 的 dendrogram文件 其实是9个 内容...300 13 spike-Tcells 300 应该是13个细胞类型,其中两个 'ref-Tcells' 和 'ref-mono'是另外的文件,不会在infercnv.observations_dendrogram.txt...所以就是读入的 inferCNV 的 dendrogram文件的9个 内容。
line = 1, col = "#A38630", las = 2) plot of chunk unnamed-chunk-8 par(op) 如果对默认的可视化效果不满意,可以先用as.dendrogram...dhc <- as.dendrogram(h.clust) plot(dhc,type = "triangle") # 比如换个类型 plot of chunk unnamed-chunk-9 可以提取部分树进行查看...n } # 把自定义标签颜色应用到聚类树中 diyDendro = dendrapply(dhc, colLab) # 画图 plot(diyDendro, main = "DIY Dendrogram...语言可视化聚类树 R语言画好看的聚类树 又是聚类分析可视化 树状数据/层次数据可视化 参考资料 R帮助文档 https://r-graph-gallery.com/31-custom-colors-in-dendrogram.html
层次聚类与密度聚类代码实现 层次聚类 import numpy as np from scipy.cluster.hierarchy import linkage, dendrogram import...np.random.rand(10, 2) # 使用linkage函数进行层次聚类 linked = linkage(data, 'single') # 画出树状图(树状图是层次聚类的可视化) dendrogram
dist(test)) plot(hc,hang=1,cex=0.5,labels = NULL) 另类聚类图 将hclude生成的对象转换为另类的聚类图 > hcd = as.dendrogram...} + n + } clusDendro = dendrapply(hcd, colLab) plot(clusDendro, main = “Cool Dendrogram...比如我们可以给叶子节点来点颜色 # install.packages('sparcl') library(sparcl) # colors the leaves of a dendrogram y=cutree...data = label(ddata), aes(x = x, y = y, label = label), angle = 90, lineheight = 0) Colored dendrogram...col.up="gray50", col.down=c("#FF6B6B", "#4ECDC4", "#556270")) par(op) #another colored dendrogram
无监督算法 层次聚类 from scipy.cluster.hierarchy import dendrogram, ward, single from sklearn.datasets import...load_iris import matplotlib.pyplot as plt X = load_iris().data[:150] linkage_matrix = ward(X) dendrogram...(linkage_matrix) plt.show() 输出如下: 这段代码是Python脚本,用于通过Scipy和Scikit-learn库绘制层次聚类的谱系图(dendrogram)。...下面是逐行解释: from scipy.cluster.hierarchy import dendrogram, ward, single 这一行导入了Scipy库中层次聚类相关的三个函数:dendrogram...dendrogram(linkage_matrix) 这一行使用linkage_matrix作为参数调用dendrogram函数,绘制基于这个连接矩阵的谱系图。
col_dist, method = "complete") row_hc <- hclust(row_dist, method = "complete") #层次聚类 col_d <- as.dendrogram...(col_hc) row_d <- as.dendrogram(row_hc) #生成系统树图 一、gapmap 1.绘制没有间隙的聚类图 gapmap(m = as.matrix(dataTable...0.1,0.8,0.1), h_ratio=c(0.1,0.8,0.1), label_size=2, show_legend=TRUE, col=RdBu) 2.绘制空白树状图(gapped dendrogram...gap_dendrogram 是ggplot2绘制空白树状图的方法,输入数据类型为gapdata class,由gap_data()生成 row_data <- gap_data(d= dendsort...quantitative", mapping="exponential", ratio=0.3, scale= 0.5) #生成数据 dend <- gap_dendrogram
visium-hd/hcc-16um/"sc.set_figure_params(dpi_save=300)sc.tl.rank_genes_groups(adata, groupby='leiden', dendrogram...=False, use_raw=True)sc.tl.dendrogram(adata, use_raw=True, groupby='leiden')WARNING: You’re trying to...=False, use_raw=True)sc.tl.dendrogram(adata, use_raw=True, groupby='domain')sc.pl.rank_genes_groups_matrixplot...=False, use_raw=True)sc.tl.dendrogram(adata, groupby='domain')sc.settings.figdir = "....=False, use_raw=True)sc.tl.dendrogram(adata, groupby='leiden')sc.settings.figdir = ".
- ''' import numpy as np from matplotlib import pyplot as plt from scipy.cluster.hierarchy import dendrogram...from sklearn.datasets import load_iris from sklearn.cluster import AgglomerativeClustering def plot_dendrogram
我们需要导入必要的Python库: import numpy as np import matplotlib.pyplot as plt from scipy.cluster.hierarchy import dendrogram...绘制树形图 接下来,我们可以绘制树形图(谱系图)来可视化聚类结果: plt.figure(figsize=(10, 6)) dendrogram(Z) plt.title('Hierarchical Clustering...Dendrogram') plt.xlabel('Sample Index') plt.ylabel('Distance') plt.show() 结论 通过本文的介绍,我们了解了层次聚类算法的基本原理和
d_iris,method="complete") iris_species<-rev(levels(iris[,5])) iris_species library(dendextend) dend<-as.dendrogram...(hc_iris) dend <- color_branches(dend, k=3) labels(dend) <- paste(as.character(iris[,5])[order.dendrogram...(dend)], "(",labels(dend),")", sep = "") circlize_dendrogram
: clc; clear; Y=[0.080 0.143 2.000 0.250 0.500 0.286 0.143 2.000 2.000 inf]; Z=linkage(Y,'average') dendrogram...plt from sklearn import decomposition as skldec # 用于主成分分析降维的包 from scipy.cluster.hierarchy import dendrogram...最远邻,把类与类间距离最远的作为类间距 Z = linkage(X, 'average') f = fcluster(Z, 4, 'distance') fig = plt.figure() dn = dendrogram
领取专属 10元无门槛券
手把手带您无忧上云