首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

fortran中不兼容的秩0和1

在Fortran中,秩(rank)是指数组的维度数。秩0表示一个标量,即一个单独的数值。秩1表示一个一维数组,即一系列有序的数值。

在Fortran中,秩0和秩1是不兼容的,因为它们具有不同的数据类型和操作方式。

秩0(scalar)的特点:

  • 数据类型为实数、整数、逻辑值等基本类型。
  • 无法进行数组操作,只能进行基本的数学运算和逻辑运算。
  • 不能使用数组相关的函数和子程序。

秩1(array)的特点:

  • 数据类型可以是实数、整数、逻辑值等基本类型,也可以是自定义的派生类型。
  • 可以进行数组操作,如索引、切片、重塑等。
  • 可以使用数组相关的函数和子程序。

在Fortran中,秩0和秩1的区别在于数据类型和可操作性。秩0适用于表示单个数值,而秩1适用于表示一系列有序的数值。

在实际应用中,根据具体需求选择使用秩0或秩1的变量或数组。如果只需要表示单个数值,则使用秩0的变量;如果需要表示一系列有序的数值,则使用秩1的数组。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云计算服务:https://cloud.tencent.com/product/cvm
  • 腾讯云数据库:https://cloud.tencent.com/product/cdb
  • 腾讯云对象存储:https://cloud.tencent.com/product/cos
  • 腾讯云人工智能:https://cloud.tencent.com/product/ai
  • 腾讯云物联网:https://cloud.tencent.com/product/iot
  • 腾讯云移动开发:https://cloud.tencent.com/product/mobdev
  • 腾讯云区块链:https://cloud.tencent.com/product/bc
  • 腾讯云元宇宙:https://cloud.tencent.com/product/vr
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • numpy库reshape用法详解

    a:array_like 要重新形成的数组。 newshape:int或tuple的整数 新的形状应该与原始形状兼容。如果是整数,则结果将是该长度的1-D数组。一个形状维度可以是-1。在这种情况下,从数组的长度和其余维度推断该值。 order:{‘C’,’F’,’A’}可选 使用此索引顺序读取a的元素,并使用此索引顺序将元素放置到重新形成的数组中。’C’意味着使用C样索引顺序读取/写入元素,最后一个轴索引变化最快,回到第一个轴索引变化最慢。’F’意味着使用Fortran样索引顺序读取/写入元素,第一个索引变化最快,最后一个索引变化最慢。注意,’C’和’F’选项不考虑底层数组的内存布局,而只是参考索引的顺序。’A’意味着在Fortran类索引顺序中读/写元素,如果a 是Fortran 在内存中连续的,否则为C样顺序。

    03

    每日论文速递 | GaLore: 使用梯度低秩映射进行大模型 Memory-Efficient 全参训练

    摘要:训练大型语言模型(LLMs)面临着显著的内存挑战,主要是由于权重和优化器状态的不断增大。常见的内存降低方法,如低秩适应(LoRA),在每一层中向冻结的预训练权重添加一个可训练的低秩矩阵,从而减少可训练参数和优化器状态。然而,这些方法通常在预训练和微调阶段的性能上都不如使用全秩权重训练,因为它们将参数搜索限制在低秩子空间中,改变了训练动态,并且可能需要全秩热启动。在这项工作中,我们提出了Gradient Low-Rank Projection(GaLore),一种允许全参数学习但比LoRA等常见低秩适应方法更节省内存的训练策略。我们的方法在优化器状态的内存使用上最多减少了65.5%,同时在使用C4数据集进行LLaMA 1B和7B架构的预训练以及在GLUE任务上对RoBERTa进行微调时,保持了效率和性能。我们的8位GaLore相较于BF16基准,将优化器内存进一步降低了82.5%,总训练内存降低了63.3%。值得注意的是,我们首次证明了在具有24GB内存的消费级GPU上(例如NVIDIA RTX 4090)进行7B模型的预训练是可行的,而无需模型并行、检查点策略或卸载策略。

    01

    每日论文速递 | 【ICLR'24 Oral】LoftQ: 更好地将LLM量化与LoRA微调结合

    摘要:量化是为服务大语言模型(LLMs)不可或缺的技术,最近已经应用到LoRA微调中。在这项工作中,我们关注的是在一个预训练模型上同时应用量化和LoRA微调的情景。在这种情况下,通常会观察到在下游任务性能上的一致差距,即在完全微调和量化加LoRA微调方法之间。为了应对这一问题,我们提出了LoftQ(LoRA微调感知量化),这是一个新颖的量化框架,可以同时对LLM进行量化并找到LoRA微调的适当低秩初始化。这种初始化缓解了量化和全精度模型之间的差异,并显著提高了在下游任务中的泛化性能。我们在自然语言理解、问答、摘要和自然语言生成任务上评估了我们的方法。实验证明我们的方法非常有效,并在具有挑战性的2比特和2/4比特混合精度区域中优于现有的量化方法。

    01

    SEED:在大语言模型中播下一颗视觉的"种子"

    近年来,在海量文本语料库上进行预训练的大语言模型已趋于成熟,表现出在理解、推理和生成各种开放式文本任务上的卓越能力。最近的研究聚焦于进一步利用大语言模型的强大通用性来提升视觉理解和视觉生成任务的效果,统称为多模态大语言模型。先前的工作通过将预先训练的图像编码器(例如CLIP-ViT)的视觉特征与大语言模型的输入嵌入空间对齐来执行开放式视觉QA。GILL通过将其输出嵌入空间与预训练的稳定扩散模型对齐,从而赋予大语言模型图像生成能力。虽然这些研究促进了技术进步,但在新兴能力方面,多模态大语言模型尚未取得像大预言模型那样的显著成功。

    07
    领券