从Engle在1982发表自回归条件异方差(ARCH)模型的论文以来,金融时间序列数据的波动性就倍受关注。同时,近几年又出现了研究股票市场的波动传递性
P 和 Q 分别是 GARCH 和 ARCH 多项式中的最大非零滞后。其他模型参数包括平均模型偏移、条件方差模型常数和分布。
本文展示了如何基于基础ARMA-GARCH过程(当然这也涉及广义上的QRM)来拟合和预测风险价值(Value-at-Risk,VaR)
风险价值 (VaR) 是金融风险管理中使用最广泛的市场风险度量,也被投资组合经理等从业者用来解释未来市场风险
在本文中,波动率是众多定价和风险模型中的关键参数,例如BS定价方法或风险价值的计算。在这个模型中,或者说在教科书中,这些模型中的波动率通常被认为是一个常数
我们被客户要求撰写关于气象集成预报技术的研究报告,包括一些图形和统计输出。 随着天气预报技术的发展,数值预报产品日益丰富,预报方法多种多样 ( 点击文末“阅读原文”获取完整代码数据******** )。
该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去(随机)影响的值。ARIMAX模型是ARIMA模型的一个扩展版本。它还包括其他独立(预测)变量。该模型也被称为向量ARIMA或动态回归模型。
从Engle在1982发表自回归条件异方差(ARCH)模型的论文以来,金融时间序列数据的波动性就倍受关注。同时,近几年又出现了研究股票市场的波动传递性。多市场的多维广义自回归条件异方差模型及其在不同条件下的扩展与变形,它们不仅包含了单变量的波动特性,而且很好的描述了不同变量间的相互关系。所以,多维GARCH模型为分析金融市场的相互影响提供了有力的工具。
两个随机变量之间的相依性问题备受关注,相依性(dependence)是反映两个随机变量之间关联程度的一个概念
本文应用R软件技术,分别利用logistic模型、ARFMA模型、ARIMA模型、时间序列模型对从2016到2100年的世界人口进行预测
你可能会问,为什么是copulas?我们指的是数学上的概念。简单地说,copulas是具有均匀边缘分布的联合分布函数 。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
本文比较了几个时间序列模型,以预测SP500指数的每日实际波动率。基准是SPX日收益序列的ARMA-EGARCH模型。将其与GARCH模型进行比较 。最后,提出了集合预测算法 。
这篇文章讨论了自回归综合移动平均模型 (ARIMA) 和自回归条件异方差模型 (GARCH) 及其在股票市场预测中的应用
布朗运动的数学模型(也称为随机游动)也可以用来描述许多现象以及微小颗粒的随机运动, 如股市的波动和在化石中的物理特性的演变。
这是一篇本应早就写完的博客文章。一年前我写了一篇文章,关于在 R 中估计 GARCH(1, 1) 模型参数时遇到的问题。我记录了参数估计的行为(重点是 β ),以及使用 fGarch 计算这些估计值时发现的病态行为。我在 R 社区呼吁帮助,包括通过 R Finance 邮件列表发送我的博客文章。
在大数据的趋势下,我们经常需要做预测性分析来帮助我们做决定。其中一个重要的事情是根据我们过去和现在的数据来预测未来。这种方法我们通常被称为预测
在本文中,预测股价已经受到了投资者,政府,企业和学者广泛的关注。然而,数据的非线性和非平稳性使得开发预测模型成为一项复杂而具有挑战性的任务
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数
要执行此分析,我们需要资产的历史数据。数据提供者很多,有些是免费的,大多数是付费的。在本文中,我们将使用Yahoo金融网站上的数据。
金融市场的股票价格时间序列分析一直以来都是投资者和研究者关注的主题之一。准确预测股票价格的趋势对于制定有效的投资策略和决策具有重要意义。因此,许多研究人员使用各种统计方法和模型来分析和预测股票价格的变动。
在本文中,我想向您展示如何应用S&P500股票市场指数的交易策略(点击文末“阅读原文”获取完整代码数据)。
最近我们被客户要求撰写关于ARIMA + GARCH交易策略的研究报告,包括一些图形和统计输出。
预测股价已经受到了投资者,政府,企业和学者广泛的关注。然而,数据的非线性和非平稳性使得开发预测模型成为一项复杂而具有挑战性的任务。在本文中,我将解释如何将 GARCH,EGARCH和 GJR-GARCH 模型与Monte-Carlo 模拟结合使用, 以建立有效的预测模型。金融时间序列的峰度,波动率和杠杆效应特征证明了GARCH的合理性。时间序列的非线性特征用于检查布朗运动并研究时间演化模式。非线性预测和信号分析方法因其在特征提取和分类中的鲁棒性而在股票市场上越来越受欢迎。
现在,分位数回归已被确立为重要的计量经济学工具。与均值回归(OLS)不同,目标不是给定x的均值,而是给定x的一些分位数 ( 点击文末“阅读原文”获取完整代码数据******** )。
其中 F−1是分布函数的倒数,也称为分位数函数。因此,一旦可以定义收益序列的分布,VaR 就很容易计算。
然后,我们可以创建标准普尔500的“收盘价”的对数收益率差分序列,并去除初始NA值:
风险价值 (VaR) 是一种统计数据,用于量化公司、投资组合在特定时间范围内可能发生的财务损失程度
最近我们被客户要求撰写关于ARMA-GARCH-COPULA的研究报告,包括一些图形和统计输出。
在这篇文章中,我们将学习一种在价格序列中建立波动性模型的标准方法,即广义自回归条件异方差(GARCH)模型。
本文将说明单变量和多变量金融时间序列的不同模型,特别是条件均值和条件协方差矩阵、波动率的模型
在多变量波动率预测中,我们有时会看到对少数主成分驱动的协方差矩阵建模,而不是完整的股票。使用这种因子波动率模型的优势是很多的。
之前几篇总结的方法都是对于向前一日VaR的建模,都以是以VaR=波动率乘以分布函数逆函数为基础。但如果要计算向前k日的VaR,如果还使用上述公式,波动率和分布函数应该换成k日滚动窗口的,好像还没见过这样的Garch模型。
这个想法是在这里使用一些多变量ARMA-GARCH过程。这里的启发式是第一部分用于模拟时间序列平均值的动态,第二部分用于模拟时间序列方差的动态。
最近我们被客户要求撰写关于交易策略的研究报告,包括一些图形和统计输出。 在本文中,我想向您展示如何应用S&P500股票市场指数的交易策略
普通的模型对于两个序列的波动分析一般是静态的,但是dcc-garch模型可以实现他们之间动态相关的波动分析,即序列间波动并非为一个常数,而是一个随着时间的变化而变化的系数。其主要用于研究市场间波动率的关系
这篇文章讨论了自回归综合移动平均模型 (ARIMA) 和自回归条件异方差模型 (GARCH) 及其在股票市场预测中的应用 ( 点击文末“阅读原文”获取完整代码数据******** )。
和宏观经济数据不同,金融市场上多为高频数据,比如股票收益率序列。直观的来说 ,后者是比前者“波动”更多且随机波动的序列,在一元或多元的情况下,构建Copula函数模型和GARCH模型是最好的选择。
最近我被要求撰写关于金融时间序列的copulas的调查。 从读取数据中获得各种模型的描述,包括一些图形和统计输出。
本文显示了如何基于潜在的ARMA-GARCH模型(当然也涉及更广泛意义上的QRM)来拟合和预测风险价值(VaR)。
VaR方法作为当前业内比较流行的测量金融风险的方法,具有简洁,明了的特点,而且相对于方差来讲,更多的将投资人的损失作为风险具有更好的合理性。
时间序列分析是统计学中的一个主要分支,主要侧重于分析数据集以研究数据的特征并提取有意义的统计信息来预测序列的未来值
如何构建合适的模型以恰当的方法对风险进行测量是当前金融研究领域的一个热门话题 ( 点击文末“阅读原文”获取完整代码数据******** )。
领取专属 10元无门槛券
手把手带您无忧上云