Apache Calcite是一款开源的动态数据管理框架,提供了标准的 SQL 语言、查询优化和连接各种数据源的能力,但不包括数据存储、处理数据的算法和存储元数据的存储库。
SparkSql的第一件事就是把SQLText解析成语法树,这棵树包含了很多节点对象,节点可以有特定的数据类型,同时可以有0个或者多个子节点,节点在SparkSQL中的表现形式为TreeNode对象。举个实际的例子:
前几天,Flink官方release了Flink1.10版本,这个版本有很多改动。比如:
今天小强给大家介绍Spark SQL,小强的平时的开发中会经常使用Spark SQL进行数据分析查询操作,Spark SQL是整个Spark生态系统中最常用的组件。这也是为什么很多大公司使用Spark SQL作为大数据分析的关键组件之一。
本文介绍了Hadoop基础教程-第11章 Hive:SQL on Hadoop(11.1 Hive 介绍)(草稿),讲解了Hive的出现原因、架构、特点以及如何使用Hive进行大数据分析。Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。
我们在工作中经常会听到这样的声音:“SQL查询慢?你给数据库加个索引啊”。虽然加索引并不一定能解决问题,但是这初步的体现了SQL优化的思想。
0. SparkSQL SparkSQL完全脱离了Hive的限制。 SparkSQL支持查询原生的RDD。
Hive使用MapReduce作为底层计算框架,是专为批处理设计的。但随着数据越来越多,使用Hive进行一个简单的数据查询可能要花费几分到几小时,显然不能满足交互式查询的需求。
我在之前的硬刚系列《大数据方向另一个十年开启 |《硬刚系列》第一版完结》中写过一个《硬刚Hive | 4万字基础调优面试小总结》,这个小结里基本涵盖了你所看过的关于Hive的常见的知识和面试八股文。
本文主要是对数据库查询优化器的一个综述,包括查询优化器分类、查询优化器执行过程和CBO框架Calcite。
经过前面几期内容的介绍,相信大家已经把Hadoop的环境搭建好了吧。正如前几期所说,Hadoop的搭建实际上最核心的就是HDFS(文件存储系统)、Map-Reduce(运算系统)和Yarn(资源调配系统)三个组间。
Hive:Hadoop刚开始出来的时候,使用的是hadoop自带的分布式计算系统 MapReduce,但是MapReduce的使用难度较大,所以就开发了Hive。Hive的出现解决了MapReduce的使用难度较大的问题,Hive的运行原理是将HQL语句经过语法解析、逻辑计划、物理计划转化成MapReduce程序执行。
导语:得益于调度单元是通用的SQL语句,SuperSQL能够做到与特定计算引擎解耦,也正因为此原因,SuperSQL只需专注在最优执行计划生成,并根据SQL具体类型选择最佳的计算引擎。 天穹SuperSQL是腾讯自研的跨数据源、跨数据中心、跨计算引擎的大数据SQL引擎,能够满足位于不同数据中心、不同类型数据源的数据联合分析/即时查询的需求。在腾讯整个天穹大数据图谱中,负责连接端与存储。 数据源无论是关系型数据库、NoSQL还是大数据系统;数据存储无论是跨集群还是跨数据中心;数据计算无论是报表生成、分析挖掘
Chat2DB是一款有开源免费的多数据库客户端工具,支持Windows、Mac本地安装,也支持服务器端部署,Web网页访问。和传统的数据库客户端软件Navicat、DBeaver相比Chat2DB集成了AIGC的能力,能够将自然语言转换为SQL,也可以将SQL转换为自然语言,可以给出研发人员 SQL 的优化建议,极大的提升人员的效率,是AI时代数据库研发人员的利器,未来即使不懂SQL的运营业务也可以使用快速查询业务数据、生成报表能力。
SQL on Hadoop,顾名思义它是基于Hadoop生态的一个SQL引擎架构,我们其实常常听到Hive、SparkSQL、Presto、Impala架构,接下来,我会简单的描述一下常用的架构情况。
场景描述:面对大量复杂的数据分析需求,提供一套稳定、高效、便捷的企业级查询分析服务具有重大意义。本次演讲介绍了字节跳动基于SparkSQL建设大数据查询统一服务TQS(Toutiao Query Service)的一些实践以及在执行计划调优、数据读取剪枝、SQL兼容性等方面对SparkSQL引擎的一些优化。
本篇文章为大家带来Hive面试指南,文内会有两种题型,问答题和代码题,题目一部分来自于网上,一部分来自平时工作的总结。
Cloudera公司推出,提供对HDFS、Hbase数据的高性能、低延迟的交互式SQL查询功能。基于Hive使用内存计算,兼顾数据仓库、具有实时、批处理、多并发等优点 是CDH平台首选的PB级大数据实时查询分析引擎.一般公司选择使用CDH部署集群,可以考虑下Impala。
Hive的优化主要分为:配置优化、SQL语句优化、任务优化等方案。其中在开发过程中主要涉及到的可能是SQL优化这块。
我们之前已经学习过了《我们在学习Spark的时候,到底在学习什么?》,这其中有一个关于SQL的重要模块:SparkSQL。
直接与文件系统交互,仅是Spark SQL数据应用常见case之一。Spark SQL另一典型场景是与Hive集成、构建分布式数仓。
本文记录的是,在数据处理过程中,遇到了一个sql执行很慢,对一些大型的hive表还会出现OOM,一步一步通过参数的设置和sql优化,将其调优的过程。 先上sql select t1.create_time from ( select * from beatles_ods.route where year=2017 and month=07 and day=01 ) t1 left outer join ( select * from (select *,row_number() over(pa
本文将以规则人群为例,完整地描述人群创建耗时从十几分钟降低到秒级响应的优化进阶过程。
一、JavaSE 1、Java开发环境搭建 2、Java基础语法 3、Java面向对象 4、异常 5、数组/算法 6、常用类 7、集合/数据结构 8、IO流 9、线程 10、反射机制 11、网络编程 12、注解Annotation 13、MySQL初级 14、JDBC 二、JavaWeb初级 1、HTML/HTML5 2、CSS/CSS3 3、JavaScript 4、jQuery 5、Bootstrap 6、XML+XPath 7、Servlet 8、Jsp 9、EL 10、JSTL 11、Filte
之前总是喜欢去找自己的缺点,然而随着对互联网的认知越来越深入,逐渐发现,最应该做的是让自己的优势更明显,而不是总想着去补短板。
大多数的Hadoop Job是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务时消耗可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。
在了解了窗口函数实现原理 spark、hive中窗口函数实现原理复盘 和 sparksql比hivesql优化的点(窗口函数)之后,今天又撸了一遍hive sql 中窗口函数的源码实现,写个笔记记录一下。
在Spark的学习当中,RDD、DataFrame、DataSet可以说都是需要着重理解的专业名词概念。尤其是在涉及到数据结构的部分,理解清楚这三者的共性与区别,非常有必要。今天的大数据入门分享,我们就主要来讲讲Spark RDD、DataFrame、DataSet。
为更好的帮助DBA运维数据库,腾讯云将于每月开展DBbrain诊断日,腾讯云高级产品经理迪B哥直播解析经典数据库运维难题,结合腾讯云数据库智能管家DBbrain的能力,为大家提供问题优化思路和方法,玩转数据库! 本期文章将聚焦于数据库智能管家DBbrain的最新功能“SQL优化”服务,为大家详细解读如何高效、高质的完成耗时又繁重的SQL优化工作,帮助业务持续稳定的运行,实现数据库“自治”。 1 多样的数据库优化手段 数据库(Database)一直以来都在业务系统中扮演着举足轻重的角色,大部分业务的稳定运
为了便于大家理解DBbrain的SQL优化功能的使用场景和设计背景,先简单聊一聊SQL性能较差与数据库性能联系——我们通常把性能较差的SQL称之为慢SQL,一般我们可通过设置slow_query_log参数设置为ON,来捕获执行时间超过一定数值(由long_query_time参数控制)的SQL语句。表现上来理解就是执行时间过长的SQL,但广义上消耗资源过多、执行计划不够优秀的SQL同样具有影响数据库性能的潜在隐患,可能只是因为资源足够空闲(紧急升配往往能够临时掩盖性能问题)或者数据量不够大,所以这几类SQL的执行时间并没有太长,但在特定场景下却会放大其对数据库性能的影响。而一般80%的数据库性能问题都是由于SQL性能所导致的,所以如何进行SQL的优化、SQL优化的效果就成为了数据库性能提升的关键因素。那么接下来就为大家揭秘,DBbrain的智能优化引擎是如何进行SQL优化的。
含义:与date_add对应,日期减法函数,数字为正,则减多少天;为负,则加多少天。
为更好的帮助DBA运维数据库,腾讯云将于每月12日开展DBbrain诊断日,腾讯云高级产品经理迪B哥为大家解析经典数据库运维难题,结合腾讯云数据库智能管家DBbrain的能力,为大家提供问题优化思路和方法,玩转数据库!
我们现在的数据动不动就上百亿,字段动不动就是巨大的json 串,到处是疑难杂症,所以,每天就是拼命的研究这些原理,寻找优化的方法。
数据血缘(Data Lineage):是数据治理中元数据管理领域下的一个子范畴,是数据的溯源过程,获得数据产生链路,发现数据的关联关系,目的是解决"数据的哲学三问":我是谁,我从哪里来,我到哪里去。
导读:网易大数据平台的底层数据查询引擎,选用了Impala作为OLAP查询引擎,不但支撑了网易大数据的交互式查询与自助分析,还为外部客户提供了商业化的产品与服务。今天将为大家分享下Impala在网易大数据的优化和实践。
首先对于SQL优化的概念大家都会有一种潜意识的错觉,那就是创建索引,对于业务同学来说,就会产生一种不好的使用习惯,比如有一张数据表test,有5个字段,业务同学也不知道后续怎么去更好的使用,干脆建五个索引好了,毫无疑问,这是不建议的,我们希望SQL优化的内容能够尽可能从一个更加宏观的角度来看待,而不是仅仅从索引的角度去考虑。
1)合理设置分区 与Hive类似,Presto会根据元信息读取分区数据,合理的分区能减少Presto数据读取量,提升查询性能。 2)使用列式存储 Presto对ORC文件读取做了特定优化,因此在Hive中创建Presto使用的表时,建议采用ORC格式存储。相对于Parquet,Presto对ORC支持更好。 3)使用压缩 数据压缩可以减少节点间数据传输对IO带宽压力,对于即席查询需要快速解压,建议采用Snappy压缩。 4)预先排序 对于已经排序的数据,在查询的数据过滤阶段,ORC格式支持跳过读取不必要的数据。比如对于经常需要过滤的字段可以预先排序。
小文件问题的影响 1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
通过「SHOW FULL PROCESSLIST」语句很容易就能查到问题SQL,如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4UGgQtXE-1690355726417)(J:/baidudownload/09-第九阶段spark项目-一站式制造/Day5_数仓事实层DWB层构建/02_随堂笔记/Day5_数仓事实层DWB层构建.assets/image-20210518184328346.png)]
Hive存储的是逻辑上的数据仓库信息,包括表的定义、数据的存储位置(HDFS路径)、分区和表的元数据等。实际的数据文件存储在HDFS上,Hive通过HQL(Hive Query Language)实现对这些数据的SQL-like查询,本质上是将SQL查询转换为MapReduce任务在Hadoop上执行。
SQL是结构化查询语言,SQL也是一个标准,每个数据库服务器都在标准的基础上进行了相应的调整和扩展,相应的,每个数据库对数据的各种操作语言的语法就会做出相应的调整
Impala是Cloudera开源的实时查询项目,目标是基于统一的SQL快速查询各种存储系统,如HDFS、Kudu、HBase等。Impala原意为 高角羚 ,该项目的特点就是 快速 。Impala舍弃MapReduce,基于C++实现针对硬件做了很多的优化,支持数据本地性。
0x00 前言 数据仓库体系里面的主要内容也写的差不多了,现在补一点之前遗漏的点。这一篇就来聊一下 ETL。 文章结构 先聊一下什么是 ETL。 聊一下大致的概念和一般意义上的理解。 聊一聊数据流是什么样子。因为 ETL 的工作主要会体现在一条条的数据处理流上,因此这里做一个说明。 举个具体的例子来说明。 0x01 什么是 ETL ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过
从4到1,成本是逐渐增大的,因此数据库的优化上,SQL语句优化是很重要的一个方面。
Hive支持索引(3.0版本之前),但是Hive的索引与关系型数据库中的索引并不相同,比如,Hive不支持主键或者外键。并且Hive索引提供的功能很有限,效率也并不高,因此Hive索引很少使用。
随着互联网技术的快速发展,数据的规模和增长速度也在迅猛增长。在大数据时代,如何高效地处理海量数据成为了互联网专家面临的一个重要挑战。本文将围绕一个具体案例,讨论如何通过SQL优化来提高对一张1100万大表的查询速度,从而提升系统性能。
领取专属 10元无门槛券
手把手带您无忧上云