在 Python 中,数据容器是组织和管理数据的重要工具,集合作为其中一种基本的数据结构,具有独特的特性和广泛的应用。本章详细介绍了集合的定义、常用操作以及遍历方法。
画外音:集合g1中包含u1,集合g2中包含u1,合并后的微信群g3也只包含一个u1。
一分钟说清楚并查集
s7= {[1],(1,),1} #set的元素要求必须可以hash 列表不能hash
归并排序是通过分治的方式,将待排序集合拆分为多个子集合,对子集合排序后,合并子集合成为较大的子集合,不断合并最终完成整个集合的排序。
集合: 数学上,把set称作由不同的元素组成的集合,集合(set)的成员通常被称做集合元素。 集合对象是一组无序排列的可哈希的值。 集合有两种类型: 1、可变集合set 2、不可变集合frozenset 特点: 1、值不可以重复 创建可变集合set >>> s1 = set('hello') >>> s1 {'h', 'l', 'o', 'e'} #值不可以重复,所以两个L合并成一个L 创建不可变
最近 Swift 社区动作频频,又是登陆 Windows,又是推出底层基础库。现在又推出了 Swift 算法库,现在让我们看看里面到底有什么内容,是否值得现在在生产中应用,面对内容丰富的 raywenderlich/swift-algorithm-club 是否有足够的竞争力呢。
2) 使用银行家算法,进程首次申请资源时测试该进程对资源的最大需求量,若系统现有资源可以满足,则按照当前申请量分配,否则推迟分配。当进程在执行中继续申请资源时,先测试该进程,本次申请的资源数是否超过该资源所剩总量,满足则分配,否则推迟分配。
以前使用 ms sqlserver 的时候就用到过 union 关键字,将多条查询语句保存到一个列表中用程序来处理,这样可以让多个查询结果集合合并在一起,一般很少有这种需求,个人在使用的时候除非是子查询或多表查询实在无法实现的情况下才会用到。
在一些应用问题中,需要将 n 个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中要反复用到查询某一个元素归属于那个集合的运算。适合于描述这类问题的抽象数据类型称为并查集 (union-findset)。
它退化成了一条链!这样时间复杂度就会大大增加!那么假如元素直接指向代表元素,那假如代表元素迁移(见后)了呢?就在find时实时更新呗!
最近工作中遇到了一个问题:如何对大规模题库去重?公司经过多年的积累,有着近亿道题目的题库,但是由于题目来源不一导致题库中有很多重复的题目,这些重复的题目在检索时,除了增加搜索引擎的计算量外,并不会提高准确率。
并查集需要建立映射关系,那么下面的代码是建立映射关系的一种方法(并查集的实现不采用这种方法)。
一共有 n 个数,编号是 \rm{1} \sim n,最开始每个数各自在一个集合中。现在要进行 m 个操作,操作共有两种:
转载请标明出处,原文地址:http://blog.csdn.net/hackbuteer1/article/details/7348968
并查集可以看作是一个数据结构,如果你根本没有听说过这个数据结构,那么你第一眼看到 “并查集” 这三个字的时候,脑海里会浮现一个什么样的数据结构呢?
1,交集&,即:两个集合中都共有的元素 2,并集|, 即:两个集合中的所有元素,相同的元素要被删除 3,差集-, 即:集合一有但是集合二没有的元素 (注意📢:上面的三个操作都不是对原集合进行修改,而是返回一个新的集合)
对于并查集(不相交集合),很多人会感到很陌生,没听过或者不是特别了解。实际上并查集是一种挺高效的数据结构。实现简单,只是所有元素统一遵从一个规律所以让办事情的效率高效起来。
1.2. Set类型 1.2.1. 简介 Redis 的 Set 是 String 类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。 Redis 中集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是 O(1)。 集合中最大的成员数为 2次方32 - 1 (4294967295, 每个集合可存储40多亿个成员)。 类似于JAVA中的 Hashtable集合 redis的集合对象set的底层存储结构特别神奇,底层使用了intset和hashtable两种数据结构
并查集是一种用途广泛的数据结构,能够快速地处理集合的合并和查询问题,并且实现起来非常方便,在很多场合中都有着非常巧妙的应用,。 本文首先介绍并查集的定义、原理及具体实现,然后以其在最小生成树算法中的一个经典应用为例讲解其具体使用方法。 一 并查集原理及实现 并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。 并查集在使用中通常以森林来表示,每个集合组织为一棵树,并且以树根节点为代表元素。实际中以一个数组father[x]即可实现,表示节点x的父亲节点。另外用一个变量n表示节点的个数。但为了
首先我们来解释一下这个数据结构的名称,并查集其实是一个缩写,并指的是合并,查指的是查找,集自然就是集合。所以并查集的全称是合并查找集合,那么顾名思义,这是一个用来合并、查找集合的数据结构。
"""可变集合set 1、把不同的元素组合在一起叫做集合 2、如果元素有相同的只会显示一个 3、集合是无序的(无法通过索引取值) 4、不能作为字典的键 5、可变集合是可变类型,可以修改的 """ """不可变集合frozenset 1、可以作为字典的键 2、不可变集合是不可变类型,不可以修改 """ 可变集合创建和删除 # 创建集合 """ 1、使用set创建 2、将列表转换成集合 3、通过列表转换成集合,列表的内容必须是不可变的类型 """ set1 = set('1234542') list1 =
这是一道好题,让我又学了一个新的知识,离线算法+并查集 题意:先给出图,求存在多少路径使得花费T小于L,T的定义是u,v亮点的所有路径的最大边的最小值 (Unfortunately, making a pair of portals will cost min{T} energies. T in a path between point V and point U is the length of the longest edge in the path) 分析:首先将需要询问的Q进行排序,从小到大,因为L
shell sort也称缩小增量排序,是对插入排序算法的改进,其工作原理是定义一个间隔序列来表示排序过程中进行比较的元素之间有多远的间隔,每次将具有相同间隔的数分为一组,进行插入排序,大部分场景中,间隔是可以提前定义好的,也可以动态生成。在较大的数据集上,希尔排序对于插排的优化效果是非常明显的。
并查集(Union Find),从字面意思不太好理解这东西是个啥,但从名字大概可以得知与查询和集合有关,而实际也确实如此。并查集实际上是一种很不一样的树形结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。
大清都亡了,我们村还没有通网。为了响应国家的新农村建设的号召,村里也开始了网络工程的建设。 穷乡僻壤,人烟稀少,如何布局网线,成了当下村委会首个急需攻克的难题。 如下图,农户之间的距离随机,建设网线的成本与距离成正比,怎样才能用最少的成本将整个村的农户网络连通呢?
分治法的基本思想: 将一个规模为 n 的问题分解为 k 各规模较小的子问题, 这些子问题互相独立且与原问题是同类型问题。 递归地解这些子问题, 然后把各个子问题的解合并得到原问题的解。 分治法所能解决的问题一般具有的几个特征是: 该问题规模缩小到一定程度就可以容易地解决; 该问题可以分解为若干个规模较小的同类型问题; 利用该问题分解出的子问题的解可以合并为该问题的解; 原问题分解出的各个子问题是相互独立的, 即子问题之间不包含公共的子问题。 分治法可以解决的具体问题:矩阵连乘、大数乘法、二分法搜索、快速排序
给你一个长度为 n 的整数数组 coins ,它代表你拥有的 n 个硬币。第 i 个硬币的值为 coins[i] 。如果你从这些硬币中选出一部分硬币,它们的和为 x ,那么称,你可以 构造 出 x 。
我们可以用vector存名字数组里面的数据,那下标就可以做它们的编号,那这样用编号找名字是很方便的,编号是几,就找下标为几的元素就行了。 但是名字找编号就有点麻烦,所以我们可以借助map给名字和编号建立一个映射关系。
并查集被很多人认为是最简洁而优雅的数据结构之一,主要用于解决一些元素分组的问题。比如最小生成图里的克鲁斯卡尔算法就用的此知识点。它管理一系列不相交的集合,并支持两种操作:
1.给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
并查集的思想是用一个数组表示了整片森林(parent),树的根节点唯一标识了一个集合,我们只要找到了某个元素的的树根,就能确定它在哪个集合里。
变换是函数式编程中的第一大类函数,变换函数会遍历集合内容,以一个值参传入的变换器函数,变换每个元素,返回包含已修改元素的集合给链上的其他函数
在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中要反复用到查询某一个元素归属于那个集合的运算。适合于描述这类问题的抽象数据类型称为并查集(union-findset)。 并查集一般可以解决一下问题:
我们之前讲的树结构,都是由父亲节点指向孩子节点,而并查集却是由孩子指向父亲的这样一种数据结构。
Reactive Extensions(Rx)是对LINQ的一种扩展,他的目标是对异步的集合进行操作,也就是说,集合中的元素是异步填充的,比如说从Web或者云端获取数据然后对集合进行填充。Rx起源于Microsoft DevLabs小组的研究,他扩展了LINQ的一些特性,目前Rx支持多种平台如JavaScript,Windows Phone,ios,Android 。随着数据处理变得复杂,LINQ使得我们的处理逻辑变得简单清晰,同样地,随着越来越多的数据通过从云端异步获取,Rx使得这种异步数据处理操作变得简
在一些应用问题中,需要将 n 个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中要反复用到查询某一个元素归属于那个集合的运算。适合于描述这类问题的抽象数据类型称为并查集(union-find set)。
上篇文章我们说了,使用索引的注意事项,前面我们总结了查询数据库的方式有const,ref,ref_or_null,range,index,all,而使用时候需要注意,当where语句后面全是索引查询,当where语句后面跟着非索引的时候,当用and连接,比如where key1 and 非索引 = ‘abc’,这时候会先二级索引查询索引b+树进行回表。若用where key1 or 非索引 = ‘abc’,这时候会直接全表查询。
并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。
有一棵根节点为 0 的 家族树 ,总共包含 n 个节点,节点编号为 0 到 n - 1 。给你一个下标从 0 开始的整数数组 parents ,其中 parents[i] 是节点 i 的父节点。由于节点 0 是 根 ,所以 parents[0] == -1 。
2023-05-23:如果交换字符串 X 中的两个不同位置的字母,使得它和字符串 Y 相等,
连通网的最小生成树算法: 1.普里姆算法——”加点法”。 假设N=(V,{E})是连通网,TE为最小生成树的边集合。 (1)初始U={u0}(u0∈V),TE=φ; (2)在所有u∈U, v∈V-U的边(u,v)中选择一条代价最小的边(u0,v0)并入集合TE,同时将v0并入U;(并修正U-V中各顶点到U的最短边信息) (3)重复步骤(2),直到U=V为止。 此时,TE中含有n-1条边,T=(V,{TE})为N的最小生成树。 普里姆算法是逐步向U中增加顶点的“加点法”。
在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
美团在前几天也开启了春招实习招聘模式,这一轮的笔试难度比较大,总共有五题,前三题属于“送分题”,最后一题属于名副其实的难题,毕竟涉及到一个相对复杂的数据结构--并查集,我看了关于这次笔试的一些讨论,很多人都对这题有些懵逼,所以今天我们来讲一道并查集相关的算法题。
关于并查集的题目不少,官方给的数据是 30 道(截止 2020-02-20),但是有一些题目虽然官方没有贴并查集标签,但是使用并查集来说确非常简单。这类题目如果掌握模板,那么刷这种题会非常快,并且犯错的概率会大大降低,这就是模板的好处。
先对数组进行排序,然后进行逻辑判断,这里使用了集合作为一个临时存储空间,比较相邻区间的内容,如前一个区间右端点的值和下一个区间左端点的值做比较,符合合并的时候进行合并之后放入结果集,不符合合并的也放入结果集中,当所有的区间都处理完成之后,符合合并的数据就处理完成了,这也是本题的主要思路
领取专属 10元无门槛券
手把手带您无忧上云