文章目录 1、算法思想 2、代码实现 1、算法思想 最近老是碰到迭代问题,小数太多手算又算不过来,写个矩阵乘法辅助一下吧。 有两个矩阵A和B,计算矩阵A与B相乘之后的结果C。 A的列数必须等于B的行数 用矩阵A的第i行的值分别乘以矩阵B的第J列,然后将结果相加,就得到C[i][j]。 矩阵A的行等于C的行,矩阵B的列等于C的列,这两个数值用来控制循环的次数,但是每一步中需要把行和列中对应的乘机求和,所以再加一个内循环控制乘法求和就行。 下面我们进行矩阵乘法的测试 A = \begin{
在上一篇我们了解了卷积的概念,并且使用numpy实现了卷积。另一篇介绍了如何在tensorflow框架中调用API进行卷积操作。今天再介绍一个实现卷积操作的方案,使用im2col实现卷积,实际在OpenCV源码中也可以看到im2col的算法,顺便提一下opencv也可以直接部署深度学习模型,调用方法可以参考这里。
使用zeros创建一个3×23\times 23×2的0矩阵,还可以使用ones函数创建1矩阵
1.网络架构优化:可以尝试使用更轻量级的模型架构,如MobileBERT或TinyBERT。这些架构在保持相对较小的模型尺寸的同时,仍然具有合理的性能。
根据示范代码1,使用OpenGL平移、旋转、缩放变换函数来改写代码实现所要求的功能。示范代码1的代码运行结果为图1。
介绍 W3C设备方向规范允许开发者使用陀螺仪和加速计的数据。这个功能能被用来在现代浏览器里构筑虚拟现实和增强现实的体验。但是这处理原生数据的学习曲线对开发者来说有点大。 在本文中我们要分解并解释设备方
选自Medium 机器之心编译 参与:蒋思源 本文从向量的概念与运算扩展到矩阵运算的概念与代码实现,对机器学习或者是深度学习的入门者提供最基础,也是最实用的教程指导,为以后的机器学习模型开发打下基础。 在我们学习机器学习时,常常遇到需要使用矩阵提高计算效率的时候。如在使用批量梯度下降迭代求最优解时,正规方程会采用更简洁的矩阵形式提供权重的解析解法。而如果不了解矩阵的运算法则及意义,甚至我们都很难去理解一些如矩阵因子分解法和反向传播算法之类的基本概念。同时由于特征和权重都以向量储存,那如果我们不了解矩阵运算
神经网络控制是20世纪80年代以来,在人工神经网络(Artificial Neural Networks,ANN)研究取得的突破性进展基础上发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的 非线性、不确定、不确知 系统的控制问题开辟了一条新的途径。
线性可分的定义:线性可分就是说可以用一个线性函数把两类样本分开,比如二维空间中的直线、三维空间中的平面以及高维空间中的超平面。(所谓可分指可以没有误差地分开;线性不可分指有部分样本用线性分类面划分时会产生分类误差的情况。)
关于BP神经网络的原理可以参考我的上一篇文章:BP(Back Propagation)神经网络——原理篇
作为一个对线性代数一无所知的开发者,想快速对向量和矩阵进行一个了解和认识,那么本文就正好适合你。
AI 研习社按,日前,阿里机器翻译团队和 PAI 团队发表博文,阐述将 TVM 引入 TensorFlow,可以带来至少 13 倍的 batch 矩阵相乘(matmul)加速。雷锋网 AI 研习社将原文编译整理如下:
Strassen 算法是一种用于矩阵乘法的分治算法,它将原始的矩阵分解为较小的子矩阵,然后使用子矩阵相乘的结果来计算原始矩阵的乘积。
由于矩阵相乘的时间复杂度为 O(n ^ 3),因此分治算法的时间复杂度也为 O(n ^ 3)。因此,这些方法的时间复杂度都相同,都是 O(n^3)。
这是2017年NIPS上的一篇做动作识别的论文,作者提出了second-order pooling的低秩近似attentional pooling,用其来代替CNN网络结构最后pooling层中常用的mean pooling或者max pooling, 在MPII, HICO和HMDB51三个动作识别数据集上进行了实验,都取得了很好的结果。此外作者还尝试了加入pose关键点的信息,再次提高了性能。下面我详细说明我对这篇论文的理解。
设置一个已经给定的矩阵的行列重复次数 , 根据给定的矩阵 , 进行指定的重复 , 生成新矩阵 ;
对话式AI是当前AI领域最火热的细分领域之一,其中自然语言处理(NLP)是最为困难的问题之一。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
吴立德老师亲自讲解前馈神经网络和BP算法,让初学者对基础更加了解,对以后网络的改建和创新打下基础,值得好好学习!希望让很多关注的朋友学习更多的基础知识,打下牢固的基石,也非常感谢您们对我们计算机视觉战
本内容取之电子工业出版社出版、李金洪编著的《深度学习之TensorFlow工程化项目实战》一书的实例36。
写这篇博客的原因是为了记录一下矩阵转置与矩阵相乘的实现代码,供日后不时之需。直接原因是今晚(2016.09.13)参加了百度2017校招的笔试(C++岗),里面就有一道矩阵转置后相乘的在线编程题。考虑到日后笔试可能会用到,特此记录,也希望能够帮助到需要的网友。
写着神经网络计算代码,对矩阵计算想整个清晰的展示方式,就想着用 Python 绘制下矩阵运算图。先偷懒一下,看看有没有人分享过代码?
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说矩阵转置与矩阵相乘[通俗易懂],希望能够帮助大家进步!!!
前面的一系列文章跟大家分享了各种数据结构和算法的实现,本文将分享一些算法的设计技巧:分而治之、动态规划,使用这些技巧可以借算法来解决问题,提升自己解决问题的能力,欢迎各位感兴趣的开发者阅读本文。
新年第一篇技术类的文章,应该算是算法方面的文章的。看标题:快速幂和矩阵快速幂,好像挺高大上。其实并不是很难,快速幂就是快速求一个数的幂(一个数的 n 次方)。
实现炫酷的网页动画效果,自然少不了css3中transform的属性,此属性功能丰富且强大,比如实现元素的位移translate(x,y),缩放scale(x,y),2d旋转rotate(angle),倾斜变换skew(x-angle,y-angle)等,利用这些属性可以实现基本的动画效果,如果你要实现自定义和像素级别控制的高级动画效果,我们还需要深入了解它的另外一个属性——matrix,matrix就是矩阵的意思,听起来是不是很高级,你没听错实现更高级的效果,你需要了解“矩阵”,听到“矩阵”,是不是很惊慌,当初笔者学习线性代数时也甚是无聊,真不知道这门课有啥用,没想到这门课在计算机领域应用十分广泛,比如本文说的动画效果,还有现在火爆的人工智能,真是悔不当初,当时没有好好学习这么课程。
矩阵就是由多组数据按方形排列的阵列,在3D运算中一般为方阵,即M*N,且M=N,使用矩阵可使计算坐标3D坐标变得很方便快捷。下面就是一个矩阵的实例:
矩阵乘法的Strassen 这个算法就是在矩阵乘法中采用分治法,能够有效的提高算法的效率。 先来看看咱们在高等代数中学的普通矩阵的乘法 两个矩阵相乘 上边这种普通求解方法的复杂度为: O(n3)
在介绍Transformer之前,我们首先回顾一下Attention机制。我们要知道Attention的提出的目的是为了解决句子太长而出现的遗忘问题。
本文基于阿里推荐 DIN 和 DIEN 代码,梳理了下深度学习一些概念,以及TensorFlow中的相关实现。
而如果该函数被下面调用了,已经判断了a的长度和b的长度是相等的,所以这里只是单独的抽出来而已
在深度学习中经常会遇到不同维度的矩阵相乘的情况,本文会通过一些例子来展示不同维度矩阵乘法的过程。
目前推荐系统中用的最多的就是矩阵分解方法,在Netflix Prize推荐系统大赛中取得突出效果。以用户-项目评分矩阵为例,矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。今天以“用户-项目评分矩阵R(M×N)”说明矩阵分解方式的原理以及python实现。
写这篇博客的原因是为了记录一下矩阵转置与矩阵相乘的实现代码,供日后不时之需。直接原因是今晚(2016.09.13)参加了百度 2017 校招的笔试(C++岗),里面就有一道矩阵转置后相乘的在线编程题。考虑到日后笔试可能会用到,特此记录,也希望能够帮助到需要的网友。
C++中的一维数组可以存储线性结构的数据,二维数组可以存储平面结构的数据。如班上所有学生的各科目成绩就有二个维度,学生姓名维度和科目成绩维度。
主要是基于图深度学习的入门内容。讲述最基本的基础知识,其中包括深度学习、数学、图神经网络等相关内容。该教程由代码医生工作室出版的全部书籍混编节选而成。偏重完整的知识体系和学习指南。在实践方面不会涉及太多基础内容 (实践和经验方面的内容,请参看原书)。
了解过css3D属性的同学应该都了解过perspective、perspective-origin、transform-style: preserve-3d这个三个属性值, 它们构成了CSS的3d世界.
这里的每一行代表一个样本,同样的,每一列代表什么呢,代表一个特征,如下图。所以糖尿病的预测由下面这八个特征共同进行决定
线性代数行列式求值算的可真是让人CPU疼,但计算机是不累的,所以用一个c++程序帮助你验证求解行列式的值吧。
上面的两种理解方式也揭示了对向量的变换和对坐标系的变换是等价的,这一点也可以通过后面旋转变换的图示中看出来。
版权声明:本文为博主原创文章,欢迎转载。 https://blog.csdn.net/chengyuqiang/article/details/88796381
这道题拿到是懵逼的 本题最为关键的是对称矩阵相乘的算法 幸好有老哥之前探索出了 对称矩阵M的第i行和第j列的元素的数据存储在一维数组a中的位置k的计算公式: 1、当i大于或等于j时,k = (i * (i + 1)) / 2 + j (下三角) 2、当i小于j时,k = (j * (j + 1)) / 2 + i (上三角) (注意这里是整除,真的是非常Amazing,有时间可以去研究一下是怎么推出来的) 链接: https://blog.csdn.net/xiezhi123456/article/details/86607261 在他的基础上顺利解决
今天我们要学习的模型是xDeepFM模型,论文地址为:https://arxiv.org/abs/1803.05170。文中包含我个人的一些理解,如有不对的地方,欢迎大家指正!废话不多说,我们进入正题!
实现炫酷的网页动画效果,自然少不了css3中transform的属性,此属性功能丰富且强大,比如实现元素的位移translate(x,y),缩放scale(x,y),2d旋转rotate(angle),倾斜变换skew(x-angle,y-angle)等,利用这些属性可以实现基本的动画效果,如果你要实现自定义和像素级别控制的高级动画效果,我们还需要深入了解它的另外一个属性——matrix,matrix就是矩阵的意思,听起来是不是很高级,你没听错实现更高级的效果,你需要了解“矩阵”,听到“矩阵”,是不是很惊慌,当初笔者学习线性代数时也甚是无聊,真不知道这么课有啥用,没想到这门课的在计算机应用领域应用十分广泛,比如今天说的动画效果,还有现在火爆的人工智能,真是悔不当初,当时没有好好学习这么课程。
《Attention Is All You Need》是一篇Google提出的将Attention思想发挥到极致的论文(https://arxiv.org/pdf/1706.03762.pdf)。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的 CNN 和 RNN。目前大热的Bert就是基于Transformer构建的,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。
本文以Python 3.5及其以后的版本为主进行介绍。 运算符功能说明+算术加法,列表、元组、字符串合并与连接-算术减法,集合差集*乘法,序列重复/真除法//求整商-相反数%求余数,字符串格式化**幂运算<、<=、>、>=、==、!=(值)大小关系比较,集合的包含关系比较or逻辑或and逻辑与not逻辑非in成员测试is对象实体同一性测试(地址)|、^、&、<<、>>、~位运算符&、|、^集合交集、并集、对称差集@矩阵相乘运算符 最后一个矩阵相乘运算符用来对矩阵进行计算,需要用到python扩展库numpy
本文为 AI 研习社社区用户 @mantch 的博客内容,欢迎扫描底部社区名片访问 @mantch的主页,查看更多内容。
领取专属 10元无门槛券
手把手带您无忧上云