浮点数精度问题是指在计算机中使用二进制表示浮点数时,由于二进制无法精确表示某些十进制小数,导致计算结果可能存在舍入误差或不精确的情况。
之前自己答的不是满意(对 陈嘉栋的回答 还是满意的),想对这个问题做个深入浅出的总结
例如在 chrome js console 中: alert(0.7+0.1); //输出0.7999999999999999 之前自己答的不是满意(对 陈嘉栋的回答 还是满意的),想对这个问题做个深入浅出的总结
在很多编程语言中,我们都会发现一个奇怪的现象,就是计算 0.1 + 0.2,它得到的结果并不是 0.3,比如 C、C++、JavaScript 、Python、Java、Ruby 等,都会有这个问题。
原文地址:http://eux.baidu.com/blog/fe/关于js中的浮点运算
由于接触JS不久,关于JS的浮点数的计算更是之前没有用过,这次写JS项目发现的这个问题:0.1+0.2=0.3000000000004,为什么会出现这么奇怪的问题呢 ?在网上找了一些资料,JS作为解释性语言,直接计算会有浮点数精度丢失问题。 门弱类型语言的JavaScript ,从设计思想上就没有对浮点数有个严格的数据类型。
这篇是精度问题的最后一篇,要是想看前面的,请看微信历史记录。 做前端的都感觉JS这语言巨坑无比,兼容性让你摸不到头脑,甚至还会让你脱发。一些初学者遇到: 0.1 + 0.2 = 0.30000000000000004 都会觉得这JS太TM坑了,一个小数计算都不会。可是我想说,这"锅"JS不背!其实和JS采用的数值存储 IEEE754 规范有关,所有采用此规范的语言都会有此问题并不是JS的"锅"。 IEEE754 IEEE浮点数算术标准(IEEE 754)是最广泛使用的浮点数运算标准,为许多CPU与浮点运算器
今天和同事聊起计算机中精度的话题。于是想起一个小巧的,快速的JavaScript库:big.js。它可用于任意精度的十进制算术运算。这里分享给大家
去互联网金融或电商行业的公司面试时,一般都会遇类似“ 0.1+0.2 等于 0.3吗?”这道题,对于非科班出身的前端人是一道送命题,有些知道 0.1+0.2 不等于 0.3,但是继续深问为什么,就无法很清晰地回答。
“0.1 + 0.2 = ?” 这个问题,你要是问小学生,他也许会立马告诉你 0.3。但是在计算机的世界里就没有这么简单了,做为一名程序开发者在你面试时如果有人这样问你,小心陷阱喽! 你可能在哪里见过
所有使用 IEEE 754 标准的编程语言,都存在浮点数运算的精度问题,不论是 C/C++、Java、Ruby,还是 Go、Python,当然 JavaScript/Node.js 也是如此。
简单加法在js算出结果居然不是准确的0.9,而是0.8999999999999999,why?
Brief 一天有个朋友问我“JS中计算0.7 * 180怎么会等于125.99999999998,坑也太多了吧!”那时我猜测是二进制表示数值时发生round-off error所导致,但并不清楚具体是如何导致,并且有什么方法去规避。于是用了3周时间静下心把这个问题搞懂,在学习的过程中还发现不仅0.7 * 180==125.99999999998,还有以下的坑 1. 著名的 0.1 + 0.2 === 0.30000000000000004
1. 数据类型 计算机能够处理的各种数值以及文本、图形、音频等。 1.1 整数 python 可以处理任意大小的整数、负整数,写法和数学上一致,但是有的时候可能用十六进制来展示 1 , 100,-8080 // 十进制 0xff00, 0xa5b4 // 十六进制用0x前缀和0-9,a-f表示 1.2 浮点数 浮点数也就是小数,之所以成为浮点数,是因为浮点数的小数点是可变的。浮点数可以用数学写法如:1.23, 如果很大或者很小的浮点数,就需要用科学计数法表示,把10 用 e 来代替。整数和浮点数在计
在最近业务开发中, 作者偶遇到了一个与 JavaScript 浮点数相关的 Bug。
0.30000000000000004问题是计算机科学领域的经典BUG, 由比尔盖茨那一代人标准化的浮点数表示法造福了一代人也祸害了一代人, 由此引出了不少的坑, 比如大多数编程语言中0.1+0.2==0.30000000000000004.遇到这个问题不要担心, 你的编译环境没有坏, 只是计算机在做进制转换的时候需要绕一些丸子, 本文来具体分析一下这个bug背后的秘密, 也可以访问它的官解: http://0.30000000000000004.com/
链接 | https://zhuanlan.zhihu.com/p/30703042
1、在数学计算中,小数会有一定的误差,这是计算机本身的bug,不仅是js语言,其他语言也有这个问题。
换言之,但凡包裹在英文格式下的 单引号、双引号或三引号 里的内容,不论引号里边是英文、中文、甚至是数字、符号、火星文等,她都叫做字符串。
逛知乎的时候发现@DDDD转了一张图,这张图对js魔法的吐槽可谓非常到位。下面,我们就从这张图出发来详细讲讲js。
这个其实是计算机底层二进制无法精确表示浮点数的一个 bug, 是跨域语言的, 比如 js 中的 舍入误差
前言 前段时间, 在群里跟 Peter 说到JS的浮点数问题。 他问我, 为什么 0.1 + 0.2 !== 0.3, 而 0.05 + 0.25 === 0.3 ? 当时也大概解释了下是精度丢失,
众所周知,JavaScript 浮点数运算时经常遇到会 0.000000001 和 0.999999999 这样奇怪的结果,如 0.1+0.2=0.30000000000000004、1-0.9=0.09999999999999998,很多人知道这是浮点数误差问题,但具体就说不清楚了。本文帮你理清这背后的原理以及解决方案,还会向你解释JS中的大数危机和四则运算中会遇到的坑。
如果我们写的值是以“0x”开头的,浏览器认为其是16进制,默认帮我们转换为10进制进行处理;如果写的值是以“0”开始的,浏览器认为其是8进制,也帮助我们默认转换为10进制,剩余写的值,都是按照10进制算的,但是不论咋样,计算机最后都是按照2进制进行存储。
浮点数精度丢失,一直是前端面试八股文里很常见的一个问题,今天我们就来深入的了解一下问题背后的原理,以及给一些日常处理的小技巧。
其实这些结果都并非语言的 bug,但和语言的实现原理有关, js 所有数字统一为 Number, 包括整形实际上全都是双精度(double)类型。
JS中整数和浮点数统属于数字类型,在计算机中,所有的数字都是采用IEEE754标准的64位双精度浮点数形式存储,进而导致了无论是储存、计算中都会存在精度问题。其存储形式为: 1. 第一位是正负符号位,0: 正数 1: 负数
@引用自:http://www.cnblogs.com/IT-Bear/archive/2012/02/17/2355865.html
Javascript API GL是基于WebGL技术打造的3D版地图API,3D化的视野更为自由,交互更加流畅。提供丰富的功能接口,包括点、线、面绘制,自定义图层、个性化样式及绘图、测距工具等,使开发者更加容易的实现产品构思。充分发挥GPU的并行计算能力,同时结合WebWorker多线程技术,大幅度提升了大数据量的渲染性能。最高支持百万级点、线、面绘制,同时可以保持高帧率运行。
在看了 JavaScript 浮点数陷阱及解法(https://github.com/camsong/blog/issues/9) 和 探寻 JavaScript 精度问题(https://github.com/MuYunyun/blog/blob/master/BasicSkill/%E5%9F%BA%E7%A1%80%E7%AF%87/%E6%8E%A2%E5%AF%BBJavaScript%E7%B2%BE%E5%BA%A6%E9%97%AE%E9%A2%98.md) 后,发现没有具体详细的推导0.1+0.2=0.30000000000000004的过程,所以我写了此文补充下
在计算机中数字无论是定点数还是浮点数都是以多位二进制的方式进行存储的。 在JS中数字采用的IEEE 754的双精度标准进行存储(存储一个数值所使用的二进制位数比较多,精度更准确)
https://cdnjs.cloudflare.com/ajax/libs/mathjs/5.0.0/math.min.js
一、校验数字的js正则表达式 1 数字:^[0-9]*$ 2 n位的数字:^\d{n}$ 3 至少n位的数字:^\d{n,}$ 4 m-n位的数字:^\d{m,n}$ 5 零和非零开头的数字:^(0|
程序计算是一个很普遍的存在,但是语言的计算精度却是一个困扰人的问题,比说说,计算0.1+0.2,0.3+0.6,不用计算机计算,你用口算当然可以计算出分别为0.3和0.9,但是计算机计算的结果却不一样
在于在JS中采用的IEEE 754的双精度标准,计算机内部存储数据的编码的时候,0.1在计算机内部根本就不是精确的0.1,而是一个有舍入误差的0.1。
继续啊,顺着JS高程的目录往下走,今天是3.4.4 Boolean类型。 这个Boolean一般来说它只有二个值,true和false。但其实它还有第三种值, var xx = new Boolean; 这个xx它也可以说是一种Boolean值。 Number类型,它使用IEEE754格式表示整数和浮点数,一般我们用的最多是十进制,还有八进制、十六进制。 但要记住八进制在严格模式下是无效的,这我也是刚刚才知道。 而在计算的时候,所有的八和十六进制的数值,最终都是转换成十进制的。 啥叫浮点数? 就是数值中必须
【友情提示:舒克老湿意在为各位准备从事前端工程师岗位的小伙伴提供思路,所有代码仅供参考,切勿背题!!理解问题以及提高自己解决问题的能力最为重要!如果你有更好的解决思路,或者有什么问题,欢迎给舒克老湿留言,大家一同进步。】
随着 Rust 语言的大火,前端圈里掀起了一股 Rust 风 —— 一切能用 Rust 实现的都在尝试使用 Rust 重写,比如最近很火的对标 Babel 的 JavaScript/TypeScript 编译器 swc,相信很多人都已经尝试过了。 对于我们前端来说,这么火的语言,当然不能放过了,必须跟上时代的潮流。 一、什么是 Rust Rust 是由 Mozilla 主导开发的通用、编译型编程语言。设计准则为 “安全、并发、实用”,支持函数式、并发式、过程式以及面向对象的程序设计风格。 —— 维
Math是一个内置对象,它拥有一些数学常数属性和数学函数方法,Math用于Number类型,其不支持BigInt。
name变量名,本身不是保留字/关键字, 建议少用。 name在有的浏览器中,是自动声明过的。
小云今年大三在一家互联网公司实习,今天下班回到寝室闷闷不乐,小帅见状关心到:怎么了?碰到什么不开心的事了吗?
前段时间在开发的过程中遇到一个奇怪的 Bug。 在服务端数据正常,前端页面渲染代码正常的情况下,浏览器页面渲染出的内容却不一样。 经过一番定位,最终在 Chrome 浏览器的控制台找到了线索。 在控制台里面查看到的情形是 response 和 preview 的值不一样。
计算机系统中,数值一律采用补码来表示和存储(寄存器)。 javascript 中所有数字均用浮点数值表示,采用 IEEE 754 标准定义的 64 位浮点格式表示数字。
jQuery Validate自定义各种验证方法 validate-methods.js /***************************************************************** jQuery Validate扩展验证方法 *****************************************************************/ $(function(){ // 判断整数value是否等于0
Brief 本来只打算理解JS中0.1 + 0.2 == 0.30000000000000004的原因,但发现自己对计算机的数字表示和运算十分陌生,于是只好恶补一下。 本篇我们一起来探讨一下基础——浮点数的表示方式和加减乘除运算。 在深入前有两点我们要明确的: 1. 在同等位数的情况下,浮点数可表示的数值范围比整数的大; 2. 浮点数无法精确表示其数值范围内的所有数值,只能精确表示可用科学计数法m*2e表示的数值而已;
浮点数是计算机编程中用于表示实数的一种数据类型,用于处理具有小数部分的数值。Go语言(Golang)提供了两种主要的浮点数类型:float32和float64,分别用于单精度和双精度浮点数的表示。本篇博客将深入探讨Go语言中的浮点类型,介绍浮点数的特点、精度、舍入规则以及在实际开发中的应用。
前言:客服收到报名工具小程序用户反馈:创建报名时,输入19.9元,但是,保存的是19.89元。很明显,这是前端的一个坑,JS浮点数的坑。
简单回顾一下,简单来说,用定点数表示数字时,会约定小数点的位置固定不变,整数部分和小数部分分别转换为二进制,就是定点数的结果。
为了更好理解本文内容,可先行阅读《量化、数据类型、上溢和下溢》中内容。这里依旧将浮点数看作是一种量化方式,将连续的不可数的集合映射到有限的集合上去。本文结合单精度浮点数讨论,双精度浮点与之类似。
领取专属 10元无门槛券
手把手带您无忧上云