https://gitee.com/yaukie/x-smart-kettle-server
Kettle作为用户规模最多的开源ETL工具,强大简洁的功能深受广大ETL从业者的欢迎。但kettle本身的调度监控功能却非常弱。Pentaho官方都建议采用crontab(Unix平台)和计划任务(Windows平台)来完成调度功能。所以大家在实施kettle作业调度功能的时候,通常采用以下几种方式:使用spoon程序来启动Job,使用crontab或计划任务,自主开发java程序来调用kettle的类库。
Kettle是一款基于Java语言开发的可视化编程开源ETL工具,支持单机、集群方式部署。
大家好,我是一哥,最近有小伙伴私聊我说他们的调度系统经常出问题,领导要求大家人在哪电脑背到哪,家庭生活一地鸡毛……,其实我也有类似的经历,今天给大家分享一下做调度系统的一些经验!
记得第一次参与大数据平台从无到有的搭建,最开始任务调度就是用的Crontab,分时日月周,各种任务脚本配置在一台主机上。crontab 使用非常方便,配置也很简单。刚开始任务很少,用着还可以,每天起床巡检一下日志。随着任务越来越多,出现了任务不能在原来计划的时间完成,出现了上级任务跑完前,后面依赖的任务已经起来了,这时候没有数据,任务就会报错,或者两个任务并行跑了,出现了错误的结果。排查任务错误原因越来麻烦,各种任务的依赖关系越来越负责,最后排查任务问题就行从一团乱麻中,一根一根梳理出每天麻绳。crontab虽然简单,稳定,但是随着任务的增加和依赖关系越来越复杂,已经完全不能满足我们的需求了,这时候就需要建设自己的调度系统了。
Pentaho Data Integration (Kettle)是Pentaho生态系统中默认的ETL工具。通过非常直观的图形化编辑器(Spoon),您可以定义以XML格式储存的流程。在Kettle运行过程中,这些流程会以不同的方法编译。用到的工具包括命令行工具(Pan),小型服务器(Carte),数据库存储库(repository)(Kitchen)或者直接使用IDE(Spoon)。
TASKCTL 是一款免费、国产的ETL调度工具。以其实时数据集成、全 WEB 可视化操作、高性能和对国产数据库的深度支持,迅速成为市场的新选择。
数据仓库选型是整个数据中台项目的重中之重,是一切开发和应用的基础。而数据仓库的选型,其实就是Hive数仓和非Hive数仓的较量。Hive数仓以Hive为核心,搭建数据ETL流程,配合Kylin、Presto、HAWQ、Spark、ClickHouse等查询引擎完成数据的最终展现。而非Hive数仓则以Greenplum、Doris、GaussDB、HANA(基于SAP BW构建的数据仓库一般以HANA作为底层数据库)等支持分布式扩展的OLAP数据库为主,支持数据ETL加工和OLAP查询。
ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程),对于企业或行业应用来说,我们经常会遇到各种数据的处理,转换,迁移,所以了解并掌握一种etl工具的使用,必不可少。最近用kettle做数据处理比较多,所以也就介绍下这方面内容,这里先对比下几款主流的ETL工具。
作业和转换可以在图形化界面里执行,但这只是在开发、测试和调试阶段。在开发完成后,需要部署到实际运行环境,在部署阶段,Spoon就很少用到了。
ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL 是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。我们在下方列出了 7 款开源的 ETL 工具,并讨论了从 ETL 转向“无 ETL”的过程,因为 ELT 正迅速成为现代数据和云环境的终极过程。
序号名称软件性质数据同步方式作业调度1Informatica(美国) 入华时间2005年 http://www.informatica.com.cn商业 图形界面 支持增量抽取,增量抽取的处理方式,增量加载的处理方式,提供数据更新的时间点或周期工作流调度,可按时间、事件、参数、指示文件等进行触发,从逻辑设计上,满足企业多任务流程设计。相当专业的ETL工具。IInformatica PowerCenter用于访问和集成几乎任何业务系统、任何格式的数据,它可以按任意速度在企业内交付数据,具有高性能、高可扩展
☞ ETL同步之道 [ Sqoop、DataX、Kettle、Canal、StreaSets ]
批量调度自动化技术是大数据时代数据整合后台不可缺少的重要技术。TASKCTL 是一款企业级免费批量调度系统,支持各类脚本、程序的调度。具备可视化图形拖拽式设计界面,可视化作业管控、计划调度、实时监控、消息提醒和日志分析功能;有效弥补了传统ETL工具在调度管理和监控分析方面不足;同时平台还提供元数据管理、数据关系分析、版本控制、日志分析等完善的辅助管理功能,为企业提供数据迁移、数据仓库、数据标准化、数据同步、数据备份、数据交换以及企业定制化二次开发在内的一体化整合服务。
开源ETL工具(Kettle) V5.1.0 免费Spoon版 http://www.cr173.com/soft/30051.html ETL工具大全,你了解多少 http://bbs.csdn.net/topics/390349305 Kettle_抽取数据举例 http://blog.csdn.net/huangyanlong/article/details/42264543
☞ ETL同步之道 [ Sqoop、DataX、Kettle、Canal、StreamSets ]
使用 TapData,化繁为简,摆脱手动搭建、维护数据管道的诸多烦扰,轻量代替 OGG、DSG 等同步工具,「CDC + 流处理 + 数据集成」组合拳,加速仓内数据流转,帮助企业将真正具有业务价值的数据作用到实处,将“实时数仓”方法论落进现实。 TapData 持续迭代产品能力,优化用户体验的同时,也在不断探索各行各业数据需求的底层逻辑,力求为行业用户提供更加简洁、更具针对性的解题思路。本期内容便是我们在船舶制造行业做出的实践。
来到了 2021 年的最后一天,自 6 月 6 日开源立项到今天,历时 6 个月,Dlink 终于崭露头角。而 0.5 版本也将于一月中旬与大家相见。本文将带您领略 Dlink 的由来、发展、应用及前景,那我们就直接开始吧!
ETL流程是数据仓库建设的核心环节,它涉及从各种数据源中抽取数据,经过清洗、转换和整合,最终加载到数据仓库中以供分析和决策。在数据仓库国产化的背景下,ETL流程扮演着重要的角色,今天我们就来讲讲ETL流程的概念和设计方式。
TASKCTL默认采用pan命令方式调度kettle转换作业。除此之外,我们还提供了taskctl-plugin-kettle(Soap服务)插件的方式驱动kettle转换。相比原生的pan命令,Soap服务直接驱动kettle核心进行调度。资源消耗更低、速度更快,支持高并发。
ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步。ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础 。
对于数据仓库,大数据集成类应用,通常会采用ETL工具辅助完成。ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、交互转换(transform)、加载(load)至目的端的过程。当前的很多应用也存在大量的ELT应用模式。常见的ETL工具或类ETL的数据集成同步工具很多,以下对开源的Sqoop、dataX、Kettle、Canal、StreamSetst进行简单梳理比较。
ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,是数据仓库的生命线。
这样就算你可以入门了,我相信在不断的探索中你会有更多的心得的。在此也要提醒一点,KETTLE的性能可能会有不稳定的情况出现,所以注意保存你已经做过的东西。
用在linux环境下调度kettle脚本为案例说明在Linux环境下做定时任务的过程
一个基于Python,提供类似Cron功能,并深受Java Quartz 影响的轻量级进程内任务调度框架。
Spoon是Kettle的集成开发环境(IDE)。它基于SWT提供了图形化的用户接口,主要用于ETL的设计。 在Kettle安装目录下,有启动Spoon的脚本。如Windows下的Spoon.bat,类UNIX下的spoon.sh。Windows用户还可以通过执行Kettle.exe启动Spoon。Spoon的屏幕截图如图1所示。
本实验是kettle的作业设计,区别与步骤的并行执行,作业的各作业项具有先后执行顺序,这在处理某些问题的时候具有很大优势。 一个作业包含一个或多个作业项,这些作业项以某种顺序来执行。作业执行顺序由作业项之间的跳(Hop)和每个作业项的执行结果来决定,和转换一样,作业也包括注释。作业项可以是一个转换,也可是另一个作业项。
整理了当年使用过的一些,大数据生态圈组件的特性和使用场景,若有不当之处,请留言斧正,一起学习成长。
本文介绍了 SparkSQL 和 Flink 对于批流支持的特性以及批流一体化支持框架的难点。在介绍批流一体化实现的同时,重点分析了基于普元 SparkSQL-Flow 框架对批流支持的一种实现方式。希望对大家的工作有所帮助,也希望能对 DatasetFlow 模型作为框架实现提供一些启发。
最近在跟一位粉丝聊天,聊起来了做离线数仓时该用那些技术栈。于是根据我的经验和参考一些资料于就有本篇文章。在这里我会分享三个案例,仅供参考。
Kettle是一个Java编写的ETL工具,主作者是Matt Casters,2003年就开始了这个项目,最新稳定版为7.1。 2005年12月,Kettle从2.1版本开始进入了开源领域,一直到4.1版本遵守LGPL协议,从4.2版本开始遵守Apache Licence 2.0协议。 Kettle在2006年初加入了开源的BI公司Pentaho, 正式命名为:Pentaho Data Integeration,简称“PDI”。 自2017年9月20日起,Pentaho已经被合并于日立集团下的新公司: Hitachi Vantara。 总之,Kettle可以简化数据仓库的创建,更新和维护,使用Kettle可以构建一套开源的ETL解决方案。
批量调度自动化技术是大数据时代数据整合后台不可缺少的重要技术。数据是黄金,数据是整个社会乃各企业团体的重要资产,管好数据、用好数据是整个社会的重要命题。想要用好数据,首先就应该管好数据。而批量调度自动化技术,正是管好数据的重要保证。在众多大大小小数据仓库、数据集市以及各种各样的数据池子中,是批量调度自动化技术让大量数据的进出、存放、清洗、过滤、粗加工、细加工等各种各样的工作有序、高效的展开。没有批量调度自动化的数据管理、数据整合等ETL工作,就像一家大公司没有领导,所有工作必将变得紊乱、低效、失控。
引言 前面写过一篇文章《端午搬砖:聊聊调度云服务》,主要讲云服务的。如果企业也业务上云,可以优先选用这些服务,减少工作量。 而在传统企业内部,数据集成是基础,更是每个企业里面都至少有一个ETL工具或者
1、转换。Kettle在运行转换的时候,根据用户的设置,可以将数据以不同的方式发送到多个数据流中。 注意:有两种基本发送方式,即分发和复制,分发类似于发扑克牌,以轮流的方式将每行数据只发给一个数据流。复制是将一行数据发给所有数据流。
ETL是EXTRACT(抽取)、TRANSFORM(转换)、LOAD(加载)的简称,实现数据从多个异构数据源加载到数据库或其他目标地址,是数据仓库建设和维护中的重要一环也是工作量较大的一块。当前知道的ETL工具有informatica, datastage,kettle,ETL Automation,sqoop,SSIS等等。这里我们聊聊kettle的学习吧(如果你有一定的kettle使用,推荐看看Pentaho Kettle解决方案,这里用kettle实践kimball的数据仓库理论)
我在2017年写了一本名为《Hadoop构建数据仓库实践》的书。在这本书中,较为详细地讲解了如何利用Hadoop(Cloudera's Distribution Including Apache Hadoop,CDH)生态圈组件构建传统数据仓库。例如,使用Sqoop从关系数据库全量或增量抽取数据到Hadoop系统,使用Hive进行数据转换和装载处理等等。作为进阶,书中还说明了数据仓库技术中的渐变维、代理键、角色扮演维度、层次维度、退化维度、无事实事实表、迟到事实、累计度量等常见问题在Hadoop上的处理。它们都是通过Hive SQL来实现的,其中有些SQL语句逻辑复杂,可读性也不是很好。
2020年,普元基于自身技术中台所需,验证了一些新技术并加以使用,旨在不断提升技术中台的综合能力。通过这次机会,将我们团队所做的一些技术验证和使用方式与大家分享,希望在公司内外建立更好的技术沟通,同时提出技术中台的下一步发展想法,供大家参考指正。
最近遇到了很多正在研究ETL及其工具的伙伴向我们抱怨:同样都在用 Kettle ,起点明明没差异,但为什么别人ETL做的那么快那么好,自己却不断掉坑?
现在大数据这么火,各行各业想转行大数据,那么问题来了,该往哪方面发展,哪方面最适合自己?
批量处理是银行业整个信息后台最为重要的技术形态,也是银行核心信息资产数据的分享、传输、演化的重要技术手段。有调查指出,全球70%的数据是经过批量处理得以再次使用,可见批量处理在整个信息生态中的技术占比与重要行。
LiteFlow 需要提前定义好执行流程,不支持分布式执行,支持xml,json,yml,支持逻辑执行 AirFlow ***** 支持分布式算子执行,不支持java算子执行,支持python DolphinScheduler ***** Azkaban 可以跨服务执行,跨平台执行,flow支持dsl语法 Oozie manager hadoop jobs,大数据任务调度框架 Kettle Server Flowable 与Activiti 非常类似 Activiti 支持工作流引擎定义,支持角色定义,逻辑执行 EasyScheduler
本文介绍了大数据时代,网站日志分析对于网站运营的重要性,并介绍了一般的大数据日志分析系统架构,包括数据采集、数据预处理、数据仓库、数据导出、数据可视化和流程调度等模块。同时,本文还介绍了一个具体的大数据处理案例,包括使用Flume和Hive等开源框架进行网站日志分析的过程,以及使用Hadoop、Sqoop等工具进行数据处理和可视化的技术细节。
Kettle的建立数据库连接、使用kettle进行简单的全量对比插入更新:kettle会自动对比用户设置的对比字段,若目标表不存在该字段,则新插入该条记录。若存在,则更新。
监控粒度、监控指标完整性、监控实时性是评价监控系统的三要素。从分层体系可以把监控系统分为三个层次:
Kettle简介:Kettle是一款国外开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,数据抽取高效稳定。Kettle 中文名称叫水壶,该项目的主程序员MATT 希望把各种数据放到一个壶里,然后以一种指定的格式流出。Kettle这个ETL工具集,它允许你管理来自不同数据库的数据,通过提供一个图形化的用户环境来描述你想做什么,而不是你想怎么做。Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流的控制。(引用百度百科)
这里给出一个从kettle自带的samples中拿出来的示例,详情配置,参考kettle示例
在BI或数据大屏等数据分析工具中,经常需要从多个业务系统中提取原始数据,然后对数据进行清洗、处理,以获取高质量、有效且干净的数据以供后续的BI进行数据统计和分析使用,从高质量的实现企业数据的价值变现。
Kettle是国外免费的开源轻量级ETL工具,是基于Java语言开发的,可以在Windows.Linux,UNIX系统上运行,且绿色不需安装,可用于各种数据库之间的连接。
领取专属 10元无门槛券
手把手带您无忧上云