kurtosis kurtosis is a measure of the “tailedness” of the probability distribution of a real-valued...The standard measure of kurtosis, originating with Karl Pearson, is based on a scaled version of the...For this measure, higher kurtosis is the result of infrequent extreme deviations (or outliers), as opposed
pandas的Series 数据结构可以直接调用skew()方法来查看 df.iloc[:,1].skew() Jetbrains全家桶1年46,售后保障稳定 峰度 峰度(peakedness;kurtosis
另外,由上图可以知道房价呈现正态分布,还可以看到两个统计学中的概念:峰度(Kurtosis)和偏度(Skewness)。 峰度:峰度(Kurtosis)是描述某变量所有取值分布形态陡缓程度的统计量。...Kurtosis = 0 与正态分布的陡缓程度相同 Kurtosis > 0 比正态分布的高峰更加陡峭 —— 尖顶峰 Kurtosis < 0 比正态分布的高峰来得平坦 —— 平顶峰 计算公式:β =...源 本文链接:https://www.findmyfun.cn/kurtosis-and-skewness.html 转载时须注明出处及本声明。
偏度(Skewness)与 峰度(Kurtosis) 第一部分:偏度(Skewness) 偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。...第二部分:峰度(Kurtosis) 峰度(kurtosis),表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度,计算方法为随机变量的四阶中心矩与方差平方的比值。
Kurtosis: 003.99 v_1 Skewness: 00.36 Kurtosis: -01.75 v_2 Skewness: 04.84...Kurtosis: 023.86 v_3 Skewness: 00.11 Kurtosis: -00.42 v_4 Skewness...: 00.37 Kurtosis: -00.20 v_5 Skewness: -4.74 Kurtosis: 022.93 v_6 Skewness...: 00.37 Kurtosis: -01.74 v_7 Skewness: 05.13 Kurtosis: 025.85 v_8 Skewness...: -1.19 Kurtosis: 002.39 price Skewness: 03.35 Kurtosis: 019.00 2.5.3 每个数字特征得分布可视化
-sd(x) +skew<-sum((x-m)^3/s^3)/n +kurt<-sum((x-m)^4/s^4)/n-3 +return(c(n=n,mean=m,stdev=s,skew=skew,kurtosis...146.6875000 3.21725000 stdev 6.026948 68.5628685 0.97845744 skew 0.610655 0.7260237 0.42314646 kurtosis...141.19 77.10 52.00 335.00 wt 3 32 3.22 0.98 3.33 3.15 0.77 1.51 5.42 range skew kurtosis...161.06 77.10 62.00 245.00 wt 3 19 3.77 0.78 3.52 3.75 0.45 2.46 5.42 range skew kurtosis...114.73 63.75 52.00 335.00 wt 3 13 2.41 0.62 2.32 2.39 0.68 1.51 3.57 range skew kurtosis
skew <- sum((x-mean(x))^3/sd(x)^3)/n + kurt <- sum((x-m)^4/sd(x)^4)/n-3 + return(c(skew=skew,kurtosis...2.5 2.4 -0.10 Species* 5 150 2.00 0.82 2.00 2.00 1.48 1.0 3.0 2.0 0.00 kurtosis...5.1 2.1 -0.57 Petal.Width 4 50 1.33 0.20 1.30 1.32 0.22 1.0 1.8 0.8 -0.03 kurtosis...6.9 2.4 0.52 Petal.Width 4 50 2.03 0.27 2.00 2.03 0.30 1.4 2.5 1.1 -0.12 kurtosis...wt.skew wt.kurtosis 1 4 0.2591965 -1.6450119 0.3001262 -1.3559552 2 6 -0.1583137 -1.9069714
峰度系数Kurtosis用来表示该概率密度曲线的陡峭程度。...如果是正态分布,则Kurtosis=3 (有些标准以3为基准,设置正态分布Kurtosis=0) 图12中有两个随机信号,蓝色和橙色曲线的PSD相同,RMS相同。...相对于蓝色曲线(正态分布,Kurtosis=3),橙色曲线小量级和大量级的出现概率较高,本例中橙色随机信号Kurtosis=4(有些标准以3为基准,则该曲线Kurtosis=1)。 ?
在概率统计中,有两个指标,偏度(Skewness)和峰度(Kurtosis), 偏度(Skewness),用于衡量随机变量相对于平均值的对称程度,计算方式为随机变量的三阶标准中心矩,如下, \[\...峰度(Kurtosis),用于衡量随机变量分布的集中程度,计算方式为随机变量的四阶标准中心矩,如下, \[\operatorname{Kurt}[X]=\mathrm{E}\left[\left(\...偏度(Skewness)和峰度(Kurtosis)都无量纲,在这个问题中,恰好可以用它们来构建损失函数,同时考虑方差,将损失定义如下,令 ||p|| = 1 ,移除投影向量模对方差的影响, \[L =...在构建损失函数时,要 定义清楚你的期望,期望模型达成什么目标、具有什么性质 找到合适的数学表达,来描述你的期望 如果是多目标损失,协调好不同目标间的权重和组合关系 当然,还要调参(微笑) 参考 wiki: 峰度(Kurtosis
通常我们将峰度值减去3,也被称为超值峰度(Excess Kurtosis),这样正态分布的峰度值等于0,当峰度值>0,则表示该数据分布与正态分布相比较为高尖,当峰度值<0,则表示该数据分布与正态分布相比较为矮胖...## 2012 2014 2013 2015 2007 2010 2009 ## Kurtosis 0.84289 1.073234...## 2012 2013 2017 2007 2009 2018 ## Kurtosis -0.461228 -0.200282...## 2009 2007 2008 2010 2018 2017 2011 ## Kurtosis 0.658481 1.48254...## 2010 2009 2008 2017 2018 2016 2013 ## Kurtosis 1.353797 1.500979
psych") library(psych) describe(data) vars n mean sd median trimmed mad min max range skew kurtosis...5.37e-01 0.4674 skewness 0.611 3.82e-01 0.7260 skew.2SE 0.737 4.60e-01 0.8759 kurtosis...Q1 = Q1, Median = Median, Q3 = Q3, Max = Max, Mean = Mean, Sd = Sd, Range = Range, Skewness = skew, Kurtosis...231 147 Sd 6.03 124 68.6 Range 23.5 401 283 Skewness 0.611 0.382 0.726 Kurtosis
通常我们将峰度值减去3,也被称为超值峰度(Excess Kurtosis),这样正态分布的峰度值等于0,当峰度值>0,则表示该数据分布与正态分布相比较为高尖,当峰度值<0,则表示该数据分布与正态分布相比较为矮胖...## 2012 2014 2013 2015 2007 2010 2009## Kurtosis 0.84289 1.073234 ...## 2012 2013 2017 2007 2009 2018## Kurtosis -0.461228 -0.200282...## 2009 2007 2008 2010 2018 2017 2011## Kurtosis 0.658481 1.48254 ...## 2010 2009 2008 2017 2018 2016 2013## Kurtosis 1.353797 1.500979
5733.45 kilometer Skewness: -1.53 Kurtosis: 001.14 v_0 Skewness: -1.32 Kurtosis...: 003.99 v_1 Skewness: 00.36 Kurtosis: -01.75 v_2 Skewness: 04.84 Kurtosis...: 023.86 v_3 Skewness: 00.11 Kurtosis: -00.42 v_4 Skewness: 00.37 Kurtosis...: -00.20 v_5 Skewness: -4.74 Kurtosis: 022.93 v_6 Skewness: 00.37 Kurtosis...: -01.74 v_7 Skewness: 05.13 Kurtosis: 025.85 v_8 Skewness: 00.20 Kurtosis
> psych::describe(mtcars) vars n mean sd median trimmed mad min max range skew kurtosis...doBy)summaryBy(mpg+hp+wt~am,data=mtcars,FUN=mystats)# 输出结果 am mpg.n mpg.mean mpg.stdev mpg.skew mpg.kurtosis...0.014225192 1 13 24.39231 6.166504 0.05256118 -1.4553520 13 126.8462 84.06232 1.35988586 hp.kurtosis...wt.n wt.mean wt.stdev wt.skew wt.kurtosis1 -1.2096973 19 3.768895 0.7774001 0.9759294 0.14156762...----------------------- am: 1 vars n mean sd median trimmed mad min max range skew kurtosis
2.429 Skew: -0.034 Prob(JB): 0.297 Kurtosis...2.692 Skew: -0.032 Prob(JB): 0.260 Kurtosis...2.732 Skew: -0.033 Prob(JB): 0.255 Kurtosis...3.114 Skew: 0.057 Prob(JB): 0.211 Kurtosis
421.0 mean: 14.202000000000002 std dev: 16.242444797905648 median: 12.0 skewness: 20.270437547223214 kurtosis...413.0 mean: 10.306999999999988 std dev: 16.131117877070835 median: 9.0 skewness: 20.655330340756084 kurtosis
(4) Kurtosis – set to 0 when σ=0 (NOTE: “Kurtosis” and “Excess Kurtosis” differ in that Excess Kurtosis...= Kurtosis – 3). ?...- metrics_vect(1)).^2) .* vox_val_probs ); %%%%% IF standard variance is zero, so are skewness and kurtosis...((vox_val_indices - metrics_vect(1)).^3) .* vox_val_probs ) / (metrics_vect(2)^(3/2)); %%% (4) Kurtosis...metrics_vect(4) = metrics_vect(4) - 3; else %%% (3) Skewness metrics_vect(3) = 0; %%% (4) Kurtosis
峰度(kurtosis) import torch tensor = torch.tensor([1, 2, 3, 4, 5]) kurtosis = torch.kurtosis(tensor)...print(kurtosis) 输出: tensor(-1.3000) 峰度衡量了数据分布的尾部厚度和峰度。
领取专属 10元无门槛券
手把手带您无忧上云