① 添加内存 : memblock_add 函数 , 将 内存块区域 添加到 memblock.memory 成员中 , 即 插入一块可用的物理内存 ;
一个程序内存分配: 下图是APUE中的一个典型C内存空间分布图(虚拟内存) 例如: #include int g1=0, g2=0, g3=0; int max(int i) { int m1
Linux 内核源码 linux-4.12\mm\memblock.c#34 位置 , 定义了 struct memblock 类型的变量 , 在该结构体赋值时 , .bottom_up = false 将 bottom_up 设置为了 false , 表示内存从 高地址向下分配 ;
Linux 中采用了两种不同的优先级范围,一种是 nice 值,一种是实时优先级。在上一篇粗略的说了一下 nice 值和实时优先级,仍有不少疑问,本文来详细说明一下进程优先级。linux 内核版本为 linux 2.6.34 。
该文章介绍了如何通过Linux的配置文件/etc/udev/rules.d/99-com.rules来识别和配置硬件设备,包括触摸板、键盘、鼠标等。作者通过一个实际的例子,展示了如何通过修改/etc/passwd文件来设置用户的UID和GID,以及通过修改/etc/group文件来设置用户的GID。此外,文章还介绍了如何在嵌入式设备中通过移植Linux内核来支持硬件设备的驱动,以及如何在嵌入式设备中使用Qt来开发图形界面应用程序。
调度策略参数参考 【Linux 内核】调度器 ⑨ ( Linux 内核调度策略 | SCHED_NORMAL 策略 | SCHED_FIFO 策略 | SCHED_NORMAL 策略 | SCHED_BATCH策略 ) 博客 ;
linux info : Array ( [0] => PING 115.29.237.28 (115.29.237.28) 56(84) bytes of data. [1] => 64 bytes from 115.29.237.28: icmp_seq=1 ttl=52 time=26.1 ms [2] => 64 bytes from 115.29.237.28: icmp_seq=2 ttl=52 time=27.5 ms [3] => 64 bytes from 115.29.237.28: icmp_seq=3 ttl=52 time=25.2 ms [4] => [5] => — 115.29.237.28 ping statistics — [6] => 3 packets transmitted, 3 received, 0% packet loss, time 2002ms [7] => rtt min/avg/max/mdev = 25.280/26.339/27.590/0.970 ms )
从0~99的范围专供实时进程使用, nice的值[-20,19]则映射到范围100~139
很简单呀,因为我做了实验和看了 TCP 协议栈的内核源码,发现要增大这两个队列长度,不是简简单单增大某一个参数就可以的。
我们日常测试中,有时候有些辅助程序文件比如一些配置文件需要放在主程序执行文件同样的位置,便于管理和调用,这时候我们就需要获取执行文件的绝对路径。
空间局部性:某个地址或者某个地址附近的数据和指令可能在不久的将来再次被引用。具体如下图所示。
一直以来,我都有这样一种感觉:当我学习一个新领域的知识时,如果其中的某个知识点在刚开始接触时,我感觉比较难懂、不好理解,那么以后不论我花多长时间去研究这个知识点,心里会一直认为该知识点比较难,也就是说第一印象特别的重要。
平时公司的代码安全扫描会给出不安全代码的告警,其中会检查代码中间的strcpy和sprintf函数,而要求使用strncpy和snprintf。今天我们讨论一下怎样写出完美的snprintf。 snprintf是一个在C99才被加入如标准的函数,原来的各个编译器都有自己的实现,至少.NET2003编译器还要是使用_snprintf这样的函数名称。 而这些编译器间都有差异,而且Glibc库又有自己的不同的实现。 查询一下snprintf的函数的MSDN说明。如下: Let len be the length
FreeType库是一个完全免费(开源)的、高质量的且可移植的字体引擎,它提供统一的接口来访问多种字体格式文件,可以非常方便我们开发字体显示相关的程序功能。它支持单色位图、反走样位图的渲染。FreeType库是高度模块化的程序库,虽然它是使用ANSI C开发,但是采用面向对象的思想,因此,FreeType的用户可以灵活地对它进行裁剪。关于freetype的详细信息可以参考freetype的官方网站:https://www.freetype.org/来获取更多相关的信息。
本篇博客中 , 开始分析 struct sched_class rt_sched_class 结构体变量 中的各个 函数指针 指向的 函数源码 ;
bits/stdc++|limits.h|strncasecmp|文件重定向|vector初始化|const在函数名后面| struct_class|内联函数与宏定义|vector的capacity
内核态文件操作 在用户态,我们操作文件可以用C库函数:open()、read()、write()等,但是在内核态没有库函数可用,这时就需要用内核的一些函数:filp_open、filp_close、vfs_read、vfs_write、set_fs、get_fs等函数,
在Linux中,可以对GPIO进行相关的控制,具体的做法就是利用字符设备驱动程序对相关的gpio进行控制。由于操作系统的限制,在Linux上又无法直接在应用程序的层面上对底层的硬件进行操作。本文主要通过一个点亮红外灯的实例,再次理解Linux下的应用程序与驱动程序的交互,同时加深驱动程序编写流程的理解。
/************************************************************************************
原创作品转载请注明出处https://github.com/mengning/linuxkernel/
上回书讲到了运维小哥的调优方法论(上),对于Ceph运维人员来说最头痛的莫过于两件事:一、Ceph调优;二、Ceph运维。调优是件非常头疼的事情,下面来看看运维小哥是如何调优的。
eBPF (Extended Berkeley Packet Filter) 是 Linux 内核上的一个强大的网络和性能分析工具。它允许开发者在内核运行时动态加载、更新和运行用户定义的代码。
就会出现如下结果。ps 在此处,我们可以人为ls为可执行程序的名称,--version 是该程序需要的参数。
int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict attr,void*(*start_rtn)(void*),void *restrict arg);
php.ini文件保存了php的一些重要属性,例如现在要说的文件上传的一些限制条件,关于php.ini,有一篇很好的介绍:php.ini文件详解,在Windows系统中编写php的时候,我们一定见过这个画面(来源百度):
Linux是一个支持多任务的操作系统,而多个任务之间的切换是通过 调度器 来完成,调度器 使用不同的调度算法会有不同的效果。
前面已经分析过了Intel的内存映射和linux的基本使用情况,已知head_32.S仅是建立临时页表,内核还是要建立内核页表,做到全面映射的。下面就基于RAM大于896MB,而小于4GB ,切CONFIG_HIGHMEM配置了高端内存的环境情况进行分析。
本篇我将为你介绍一个工具 - k6 ,它和 K8s 并没有什么直接的关系,它是一款开源的性能压测工具。
图形化界面的Shell 幼儿园的小孩,可以面对图形化界面的电脑,手持鼠标,愉快的上网冲浪 字符型界面的Shell 计算机专业的新生面对的无界面的Linux,用vi编写一个简单的Hello Worl
前两天看到一群里在讨论 Tomcat 参数调优,看到不止一个人说通过 accept-count 来配置线程池大小,我笑了笑,看来其实很多人并不太了解我们用的最多的 WebServer Tomcat,这篇文章就来聊下 Tomcat 调优,重点介绍下线程池调优及 TCP 半连接、全连接队列调优。
============================================================================= ============================================================================= 涉及到的知识点有: 一、fopen函数。 二、fclose函数。 三、getc 和 putc 函数 1、通过getc和putc读写指定的文件、2、拷贝文件的代码。(一个一个字节的拷贝)、 3、改进版的代码:通过命令行参数,实现指定文件名的拷贝、4、文件的加密解密操作。(用getc和putc函数实现)。 四、fgets 和 fputs函数 1、fgets 和 fputs函数、2、拷贝文件的代码。(一行一行字节的拷贝)、3、文件的加密解密操作。(用fgets和fputs函数实现)、 4、课堂练习:超大文件排序、5、解析文件内容并追加结果。 五、fprintf 和 fscanf函数 1、课堂练习:运行的结果是打印出这个文件中年龄第二大人的姓名。 ============================================================================= ============================================================================= 文件操作
前几周就获得的武侠世界2的源代码,一直没有时间表去看。从网上搞来的武侠世界2的源代码,能编译通过,大的问题没有,小问题还是挺多。其它的细节,大家其实可以在网上搜索一下。下面的游戏运行的截图:
下面使用IIC子系统框架编写EEPROM的驱动,驱动端代码使用杂项字符设备框架,并且实现了文件指针偏移;在应用层可以将EEPROM当做一个255字节大小的文件进行编程读写。
在Linux编程中,一切皆文件,往往是对一个文件进行操作,比如说串口,和传感器打交道,一般情况下就是一来一去,一收一发,但是,如果我有多个传感器,而传感器之间又有关联,我想同时监控一个或者多个以上的文件描述符,要如何去实现这个需求呢?
Linux下动态库文件的文件名形如 libxxx.so,其中so是 Shared Object 的缩写,即可以共享的目标文件。
Jaromil 在 2002 年设计了最为精简的一个Linux Fork炸弹,整个代码只有13个字符,在 shell 中运行后几秒后系统就会宕机: :(){:|:&};: 这样看起来不是很好理解,我们可以更改下格式: :() { :|:& }; : 更好理解一点的话就是这样: bomb() { bomb|bomb& }; bomb 因为shell中函数可以省略function关键字,所以上面的十三个字符是功能是定义一个函数与调用这个函数,函数的名称为:,主要的核心代码是:|:&,可以看出
第一次听到fork炸弹这种东西的时候以为是一个很神奇的破坏力惊人的高能脚本,然而稍微深入的了解了一下才发现这个玩意其实是个挺简单纯粹的东西,只是被一个叫Jaromil的家伙对他的精美包装给戏耍了。他在2002年给出了Linux下fork炸弹的最经典的形式: myths@myths-X450LD:~$ :(){ :|:& };: 一段非常忽悠人的代码,只有13个字母,乍一看完全看不懂。。但其实这个代码的思路非常简单,就是递归的开一个新的进程,不断的开不断的开,直到操作系统崩溃。中招后唯一的解决办法就是拔电源重启。
在上一节, 我们介绍了Linux内核怎么管理系统中的物理内存. 但有时候内核需要分配一些物理内存地址也连续的内存页, 所以Linux使用了 伙伴系统分配算法 来管理系统中的物理内存页.
大家对于 TCP 的三次握手应该都比较熟悉了,对于服务端,收到 SYN 包后该怎么处理,收到 Establish 之后又该怎么处理,或者说这些连接放在哪里,其实这也是之前面试问过的问题
从上图可以看到Linux系统将各异的设备分为三大类:字符设备,块设备和网络设备。内核针对每一类设备都提供了对应驱动模型架构,包括基本的内核设施和文件系统接口。
为了支持NUMA模型,也即CPU对不同内存单元的访问时间可能不同,此时系统的物理内存被划分为几个节点(node), 一个node对应一个内存簇bank,即每个内存簇被认为是一个节点
eBPF(扩展的伯克利数据包过滤器)是 Linux 内核中的一个强大功能,可以在无需更改内核源代码或重启内核的情况下,运行、加载和更新用户定义的代码。这种功能让 eBPF 在网络和系统性能分析、数据包过滤、安全策略等方面有了广泛的应用。
本节的触摸屏驱动也是使用之前的输入子系统 1.先来回忆之前第12节分析的输入子系统 其中输入子系统层次如下图所示, 其中事件处理层的函数都是通过input_register_handler()函数注册
AT24C02是IIC接口的EEPROM存储芯片,这颗芯片非常经典,百度搜索可以找到非常多的资料,大多都是51、STM32单片机的示例代码,大多采用模拟时序、裸机系统运行。当前文章介绍在Linux系统里如何编写AT24C02的驱动,并且在应用层完成驱动读写测试,将AT24C02的存储空间映射成文件,在应用层,用户可以直接将AT24C02当做一个普通文件的形式进行读写,偏移文件指针;在Linux内核里有一套标准的IIC子系统框架专门读写IIC接口设备,采用平台设备模型框架,编写驱动非常方便。
单机存储引擎负责高效的组织数据、索引数据、保存数据,为上层应用提供易用的接口。有一类存储引擎为了得到更高的性能,会跨过文件系统这一层调用,直接操作裸盘。那么如何实现这类存储引擎呢?本文希望以 Ceph BlueStore 为例子,介绍一下其中的实现方法。
传统的计算机结构中,整个物理内存都是一条线上的,CPU访问整个内存空间所需要的时间都是相同的。这种内存结构被称之为UMA(Uniform Memory Architecture,一致存储结构)。但是随着计算机的发展,一些新型的服务器结构中,尤其是多CPU的情况下,物理内存空间的访问就难以控制所需的时间相同了。在多CPU的环境下,系统只有一条总线,有多个CPU都链接到上面,而且每个CPU都有自己本地的物理内存空间,但是也可以通过总线去访问别的CPU物理内存空间,同时也存在着一些多CPU都可以共同访问的公共物理内存空间。于是乎这就出现了一个新的情况,由于各种物理内存空间所处的位置不同,于是访问它们的时间长短也就各异,没法保证一致。对于这种情况的内存结构,被称之为NUMA(Non-Uniform Memory Architecture,非一致存储结构)。事实上也没有完全的UMA,比如常见的单CPU电脑,RAM、ROM等物理存储空间的访问时间并非一致的,只是纯粹对RAM而言,是UMA的。此外还有一种称之为MPP的结构(Massive Parallel Processing,大规模并行处理系统),是由多个SMP服务器通过一定的节点互联网络进行连接,协同工作,完成相同的任务。从外界使用者看来,它是一个服务器系统。
领取专属 10元无门槛券
手把手带您无忧上云