imageSize = 96
batchSize = 64
lrD = 0.00005
lrG = 0.00005
clamp_lower, clamp_upper = -0.01, 0.01
netD...= [K.update(v, K.clip(v, clamp_lower, clamp_upper))
for v in netD.trainable_weights...]
netD_clamp = K.function([],[], clamp_updates)
netD_real_input = Input(shape=(imageSize, imageSize,...nc))
noisev = Input(shape=(nz,))
loss_real = K.mean(netD(netD_real_input))
loss_fake = K.mean(netD(...,[], loss)
netD_train = K.function([netD_real_input, noisev],
[loss_real, loss_fake