在linux bsp中,allwinner平台统一命名为“sunxi”。即:linux bsp中的“sunxi”可以理解为是allwinner的代称。
大家好,我是cloud3,本文讲一下操作系统中的调度算法以及多处理中的调度问题。
物理CPU 物理CPU就是计算机上实际配置的CPU个数。在linux上可以打开cat /proc/cpuinfo 来查看,其中的physical id就是每个物理CPU的ID,你能找到几个physical id就代表你的计算机实际有几个CPU。在linux下可以通过指令 grep ‘physical id’ /proc/cpuinfo | sort -u | wc -l 来查看你的物理CPU个数
最早意识到这两个概念可能不一样是在什么时候呢,不是在买电脑的时候哈,是在安装虚拟机的时候。
主板上实际插入的cpu数量,可以数不重复的 physical id 有几个(physical id)
hi,大家好,今天分享一篇内存性能优化的文章,文章用了大量精美的图深入浅出地分析了Linux内核slab性能优化的核心思想,slab是Linux内核小对象内存分配最重要的算法,文章分析了内存分配的各种性能问题(在不同的场景下面),并给出了这些问题的优化方案,这个对我们实现高性能内存池算法,或以后遇到内存性能问题的时候,有一定的启发,值得我们学习。
作为这个系列的第一篇,我先来描述一下slab系统。因为近些天有和同事,朋友讨论过这个主题,而且觉得这个主题还算比较典型,所以就作为第一篇了。其实按照操作系统理论来讲,进程管理应该更加重要些,按照我自己的兴趣来讲,IO管理以及TCP/IP协议栈会更加有分量,关于这些内容,我会陆续给出。
今天是参加Intel多核和多线程培训的第一天,感触颇深。因为目前我们正在开发一个分布式的多线程系统,前不久也做过一些优化,听了今天的课程,能产生一点点共鸣。
多核CPU现在很常见,那么问题来了,一个程序在运行时,只在一个CPU核上运行?还是交替在多个CPU核上运行呢?Linux内核是如何在多核间调度进程的呢?又是内核又是CPU核,两个核有点绕,下面称CPU处理器来代替CPU核。
平均负载(load average)是指系统的运行队列的平均利用率,也可以认为是可运行进程的平均数。
公司介绍 遇贤微电子始创于2020年,团队云集了CPU产业专家及技术骨干,致力于为中国市场提供国产云计算高性能CPU芯片,拉动国内云计算架构CPU切换趋势。产品基于ARM架构,采用先进制程技术,自研部分核心IP,与客户软件生态协同发展,具备一流竞争力。 初创公司+ 软件部现在由CEO直接领导负责 = 待遇没有天花板 Linux 内核工程师 工作地: 上海/深圳/西安 岗位职责: 负责针对需求定制Linux内核,结合业务需求移植、开发内核新功能; 负责对crash等疑难问题分析定位; 负责对Linux内核进行
Linux 内核中 , 通过 bitmap 管理 CPU 处理器 , 并且在 Linux 源码中的 linux-5.6.18\include\linux\cpumask.h 头文件源码中 , 定义了 CPU 的四种状态 :
每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。
对于CUDA Fortran用户来说,PGI编译器是必然要用到的。 其实PGI编译器不仅仅可以支持Fortran,还可以支持C/C++。而对于集群用户来说,要将上万行的代码加速移植到GPU集群上,PG
有诸多方式监测系统平均负载,如 uptime,它会展示系统运行时间、用户数量及平均负载:
工作中遇到的多核 ARM CPU 越来越多,总结分享一些多核启动的知识,希望能帮助更多小伙伴。 在 ARM64 架构下如果想要启动多核,有 spin-table 和 psci 两种方式,下面针对这两种启动流程进行分析。 代码版本 boot-wrapper-aarch64 version : 28932c41e14d730b8b9a7310071384178611fb32 linux v5.14 多核 CPU 的启动方式 嵌入式系统的启动的基本流程是先运行 bootloader ,然后由 bootloade
并发 是指在某一时间段内能够处理多个任务的能力,而 并行 是指同一时间能够处理多个任务的能力。并发和并行看起来很像,但实际上是有区别的,如下图(图片来源于网络):
似乎有人不知道nodejs是支持多核的?v0.10 Cluster可以搭建nodejs多核服务。v0.12重写了Cluster,据说提升了非常大的性能。
(以上三个命令各有区别,top是以固定间隔显示进程的资源占用排名,w显示who and what they are doing,uptime就顾名思义)
一、查看系统负荷 如果你的电脑很慢,你或许想查看一下,它的工作量是否太大了。 在Linux系统中,我们一般使用uptime命令查看(w命令和top命令也行)。(另外,它们在苹果公司的Mac电脑上也适用
如何利用多核CPU来加速你的Linux命令 — awk, sed, bzip2, grep, wc等 你是否曾经有过要计算一个非常大的数据(几百GB)的需求?或在里面搜索,或其它操作——一些无法并行的
linux系统中的Load对当前CPU工作量的度量 (WikiPedia: the system load is a measure of the amount of work that a computer system is doing)。也有简单的说是进程队列的长度。
本文通过实验论证:Unixbench的Pipe-based Context Switching用例受操作系统调度算法的影响波动很大,甚至出现了虚拟机跑分超过物理机的情况。在云计算时代,当前的Unixbench已不能真实地反映被测系统的真实性能,需要针对多核服务器和云计算环境进行完善。
随着云计算产业的异军突起,网络技术的不断创新,越来越多的网络设备基础架构逐步向基于通用处理器平台的架构方向融合,从传统的物理网络到虚拟网络,从扁平化的网络结构到基于 SDN 分层的网络结构,无不体现出这种创新与融合。
单进程单线程:一个人在一个桌子上吃菜。 单进程多线程:多个人在同一个桌子上一起吃菜。 多进程单线程:多个人每个人在自己的桌子上吃菜。
高性能的服务器,不一定是多线程实现的,也就是说多线程不一定比单线程效率高,这得分具体的情况。以redis为例,核心处理请求的线程只有一个,所以我们常常理解其仅仅只有一个线程,但准确来说其实并不是单线程的,比如日志的备份需要单独的fork一个进程或者线程去做备份等,那么redis何来单线程还能达到如此10万+的qps呢?其实这取决于具体的实现,redis采用了基于高性能Reactor的IO多路复用的模式+内存数据结构+单线程处理网络请求这几块,决定了其性能高的原因。
当我们试着通过 Linux 命令 nproc 和 lscpu 了解一台计算机 CPU 级的架构和性能时,我们总会发现无法正确地理解相应的结果,因为我们会被好几个术语搞混淆:物理 CPU、逻辑 CPU、虚拟 CPU、核心、线程和 Socket 等等。如果我们又增加了超线程(不同于多线程),我们就会开始不知道计算机里面到底有多少核心,我们搞不明白为什么像 htop 这样的命令会在我们认为买的是一台单核计算机上返回拥有 8 个 CPU 的结果。这样的情况一片混乱。
Linus Torvalds,是一个传奇式的人物,他给出了Linux的原型,并一直积极推广Linux。1991年,在网络上发布了源码,从此之后,Linux族群迅速壮大。
硬件中断发生频繁,是件很消耗 CPU 资源的事情,在多核 CPU 条件下如果有办法把大量硬件中断分配给不同的 CPU (core) 处理显然能很好的平衡性能。 现在的服务器上动不动就是多 CPU 多核、多网卡、多硬盘,如果能让网卡中断独占1个 CPU (core)、磁盘 IO 中断独占1个 CPU 的话将会大大减轻单一 CPU 的负担、提高整体处理效率。 VPSee 前天收到一位网友的邮件提到了 SMP IRQ Affinity,引发了今天的话题:D,以下操作在 SUN FIre X2100 M2 服务器+
CPU的英文全称是(Central Processing Unit),中文意思翻译中央处理器,是计算机的主要设备之一,功能主要是解释计算机指令以及处理计算机软件中的数据。计算机的可编程性主要是指对中央处理器的编程。
白嘉庆,西邮陈莉君教授门下研一学生。曾在华为西安研究所任C++开发一职,目前兴趣是学习Linux内核网络安全相关内容。
根据我们之前的一贯思路,对于一个工具来说都有一定边界和基础,然而软件或者数学都是基于一定的边界的,这些边界条件的变化也会对结果产生一定的影响,但是本质上没有改变。作者将这种重要的点叫做边界。边界的改变会对结果有很大的影响,但不改变主题,所以存在最优的边界条件。寻找最优的过程就是优化。
今天看到一篇论文:Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems 。 这篇论文发表于 2013 年,介绍 Linux 内核的 block layer 针对现代硬件——高速 SSD、多核 CPU(NUMA)的新设计。 总的来说,设计方案不难理解,并没有涉及什么牛逼或者新颖的内容。这里面提到的内容从 Linux 3.11 开始出现在内核,Linux 3.16 成为内核的一个完整特性[6]。Linux 5.0 开始成为 block layer 的默认选项[7]。
在上期专题中,我们提到了,NFV作为SDN的流派之一,以vBRAS等形式推进着运营商网络的重构。事实上,不仅限于在运营商领域,同时,在IDC中,基于网元虚拟化实现的vSwitch以及LB/防火墙等增值业务,也大行其道。这些NFV软件运行的平台,就是基于x86的多核处理器平台。
本文首发于腾讯云+社区,也可关注微信公众号【离不开的网】支持一下,就差你的关注支持了。
系统负载(System Load)是系统CPU繁忙程度的度量,即有多少进程在等待被CPU调度(进程等待队列的长度)。
最近在学习.NET的并行计算技术,学到一个服务器NUMA架构,NUMA架构在中大型系统上一直非常盛行,也是高性能的解决方案,在系统延迟方面表现都很优秀。Windows一向都没有在NUMA架构上有多少表现机会,AMD的多路系统大多也会用在UNIX/Linux上。Intel如期进入了NUMA架构的怀抱,英特尔最新的服务器处理器至强5500是一项重大的结构变革。与上一代至强处理器相比,至强5500采用了非一致性存储结构(NUMA),它在一块芯片上增加了向内存控制器的并行化访问路径增加非统一内存访问。可以看这篇文章
在Linux系统中,有多种方法可以查看CPU占有率,这里介绍几种常用的命令行工具。
作为资源管理的核心部分,OS的线程调度器必须保持下面这样简单,不变的特性: 确保ready状态的线程总是被调度到有效的CPU核上。虽然它看起来是简单的,我们发现这个不变性在Linux上经常被打破。当ready状态的线程在runqueue中等待时,有些CPU核却还会空闲几秒。以我们的经验,这类性能方面的问题会导致重度依赖同步的应用的性能成倍的下降,针对Kernel编译会多造成高达13%的延迟,针对广泛使用的商用数据库会造成23%的吞吐量降低。传统的测试技术和调试工具对于确认和了解这类问题是无效的,因此这些问题的症状经常是难以捕获的。为了能够推动我们的调查,我们构建了新的工具来在线检测这种违反不变性的情况并且将调度行为可视化。这些工具是简单的,易于在多个kernel版本间移植的并且使用的代价很小。我们相信这些工具将成为内核开发者工具链的一部分来帮助其避免这类问题的出现。
对于第一部分,主要是Redis自身的实现原理导致的,我们暂时不去做过多讨论。第二部分是在多核心CPU场景下,多核心之间的频繁上下文调度会导致Redis变慢,今天我们更近一步的分析一下多核心CPU场景以及NUMA架构下的Redis运行机制。
性能测试中当我们尝试使用 Linux 命令(如 nproc 或 lscpu )了解服务器CPU架构和性能参数时,我们经常发现我们无法正确解释其结果,因为我们混淆CPU、物理核、逻辑核概念等术语。
之前的文章所说的都是如何优化一条指令执行的速度(比如并发,乱序,分支预测,加相同电路让某个频繁操作可以同时进行处理),另外一种提升性能的方式就是 同时运行多个指令流,使用多核处理器:
数据平面开发套件(DPDK [1] ,Data Plane Development Kit)是由6WIND,Intel等多家公司开发,主要基于Linux系统运行,用于快速数据包处理的函数库与驱动集合,可以极大提高数据处理性能和吞吐量,提高数据平面应用程序的工作效率。
谈到Redis缓存,我们描述其性能时会这么说:支持1万并发连接,几万QPS。而我们描述Nginx的高性能时,则会宣示:支持C10M(1千万并发连接),百万级QPS。Nginx用C语言开发,而Redis是用同一家族的C++语言开发的,C与C++在性能上是同一级数的。Redis与Nginx同样使用了事件驱动、异步调用、Epoll这些机制,为什么Nginx的并发连接会高出那么多呢?(本文不讨论Redis分布式集群)
本文是一篇翻译,翻译自https://software.intel.com/en-us/blogs/2015/06/12/user-space-networking-fuels-nfv-performance,文章有点老了,15年写的,但是文章总结了一些用户态的协议栈,很有学习参考的意义。 如今,作为一个网络空间的软件开发人员是非常激动人心的,因为工程师的角色随着这个世界的规则在逐渐改变。 过去这 15 年来,人们对高性能网络做了很多努力,网络模型也发生了很多改变,起初,数据包的收发都要推送到内核才能完成
进行深度学习的训练向来不被认为是CPU的强项,但是以CPU研发见长的英特尔并不甘心屈服于这个定位,在过去的几年里,英特尔及其合作伙伴一直在探索用CPU来进行快速有效的深度学习开发的方法。代号KNL的Xeon Phi至强芯片是英特尔的努力尝试之一,同时在深度学习算法的改进上,英特尔也做了一些努力。 近日,在美国旧金山举行的IDF16大会上,与英特尔联合宣布启动了KNL试用体验计划的浪潮集团副总裁、技术总监胡雷钧做了基于英特尔至强融合处理器KNL和FPGA上的深度学习的试用体验报告。报告介绍了高性能计算和深度学
在前两期专题中,我们分析了家庭宽带(PPPoE)和IPTV(IPoE)业务认证和数据转发平面的异同。
领取专属 10元无门槛券
手把手带您无忧上云