在我前年找实习的时候,遇到了面试官问我:mysql从excel导出百万级数据,该怎么做?我听到的第一反应是:我*,我哪去接触百万级的数据,你们导出的数据是什么?我还是一个才找实习工作的大学生啊。后来也有各种各样的八股文,介绍这种导入导出的优化,然而我拒绝囫囵吞枣式学习,背八股文的方式学习。shigen也在这里实测了,在此先感谢蜗牛,为我提供了高质量的代码参考和分析案例。
本文为作者投稿,作者简介:诸葛子房,曾供职于京东,现就职于BAT,在大数据领域有多年实践经验
上个月跟朋友一起做了个微信小程序,趁着5.20节日的热度,两个礼拜内迅速积累了一百多万用户,我们在小程序页面增加了收集formid的埋点,用于给微信用户发送模板消息通知。
上个月跟朋友一起做了个微信小程序,趁着元旦放假的热度,两个礼拜内迅速积累了一百多万用户,我们在小程序页面增加了收集formid的埋点,用于给微信用户发送模板消息通知。
随着系统的运行,数据量变得越来越大,单纯的将数据存储在MySQL中,已然不能满足查询要求了,此时我们引入Redis作为查询的缓存层,将业务中的热数据保存到Redis,扩展传统关系型数据库的服务能力,用户通过应用直接从Redis中快速获取常用数据,或者在交互式应用中使用Redis保存活跃用户的会话,都可以极大地降低后端关系型数据库的负载,提升用户体验。
MongoDB是一款功能完善的分布式文档数据库,在高性能、动态扩缩容、高可用、易部署、易使用、海量数据存储等方面拥有天然优势。虽然MongoDB有很多优势,但是在国内缺存在不少的误解,影响力有待提升。
本文来自OPPO文档数据库mongodb负责人杨亚洲老师2020年深圳Qcon全球软件开发大会《专题:现代数据架构》专场、dbaplus专场:万亿级数据库MongoDB集群性能优化实践、mongodb2020年终盛会分享,分享内容如下(体验万亿级mongodb服务层、存储引擎、高并发线程模型、异地多活容灾等实现细节)。
分页查询是MySQL特有的,一般其他数据库是没有的。分页查询可以从表里取一个范围的行,例如0到50行的的数据,30到100行的数据。
Apache Doris是一个现代化的MPP分析型数据库产品。仅需亚秒级响应时间即可获得查询结果,有效地支持实时数据分析。Apache Doris的分布式架构非常简洁,易于运维,并且可以支持10PB以上的超大数据集。
CynosDB是腾讯云自研的新一代高性能高可用的企业级分布式云数据库。融合了传统数据库、云计算与新硬件的优势,100%兼容开源数据库,百万级QPS的高吞吐,不限存储,价格仅为商用数据库的1/10。
导读 mysql在5.7版本之后出了一个json类型字段,方便存储不规则字段,常用为表单的业务字段,原先mysql加个业务字段需要修改表结构。通过json字段则不需要。 例子 没有json类型 字段 解释 id 主键 name 姓名 age 年龄 address 地址 phone 电话 isDel 是否删除 运用json类型 字段 解释 id 主键 user_json 用户json {“name”:“翟”,“age”:“26”…} isDel 是否删除 如果用户增加删除一个字段,json更加灵活,不需要
基准测试(benchmarking)是性能测试的一种类型,强调的是对一类测试对象的某些性能指标进行定量的、可复现、可对比的测试。
在MariaDB中,有如下针对MariaDB与MySQL两种数据库比较的官方说法:
很多工作两三年的同行都跟我说,认为性能调优没什么用。刚工作的时候我也这样以为,但后来我才知道我当时想法多么的天真。
数据迁移,工作原理和技术支持数据导出、BI报表之类的相似,差异较大的地方是导入和导出数据量区别,一般报表数据量不会超过几百万,而做数据迁移,如果是互联网企业经常会涉及到千万级、亿级以上的数据量。
一个好的web应用,最重要的一点是有着优秀的访问性能。数据库MySQL是web应用的组成部分,也是决定其性能的重要部分。所以提升MySQL的性能至关重要。
PostgreSQL 在9.2 之后修改字段的大小,例如 varchar(20) ---> varchar(30) 返回修改仅仅是一瞬间的事情。
一般情况下mysql在百万级数据时读取、插入、更新速度较快,客户体验良好,但到了两千万级以上就会出现很慢
SELECT * FROM table ORDER BY id LIMIT 1000, 10;
之前在如何实现百万级数据从Excel导入中有提到一句不建议利用大事务进行一个错误处理。为什么不建议呢。本次来简单说一下。
上一篇谈到了我们日常开发中经常需要用到的分页,在业务数据量不多的情况下,我们直接用limit指定偏移量就可以满足我们业务需求了,但是数据量大的时候使用limit指定偏移量性能会很低,因为需要全表检索。所以上一篇主要提到了几种可以优化分页的方案,而且分页业务一般都伴随着需要count函数查询总条数,所以本篇文章主要讲讲count函数的一般优化方案。
之前我们阅读了OPPO文档数据库mongodb负责人杨亚洲老师2020年分享干货-万亿级数据库MongoDB集群性能优化实践合辑(上),本次我们分享来自答疑内容核心18问,包括内容如下:
一、什么是MongoDB? MongoDB是一个开源的,基于分布式的,面向文档存储的非关系型数据库,使用JSON风格来存储数据。其也是非关系型数据库当中功能最丰富、最像关系数据库的。MongoDB由C
通常情况下,当访问某张表的时候,读取者首先必须获取该表的锁,如果有写入操作到达,那么写入者一直等待读取者完成操作(查询开始之后就不能中断,因此允许读取者完成操作)。当读取者完成对表的操作的时候,锁就会被解除。如果写入者正在等待的时候,另一个读取操作到达了,该读取操作也会被阻塞(block),因为默认的调度策略是写入者优先于读取者。当第一个读取者完成操作并解放锁后,写入者开始操作,并且直到该写入者完成操作,第二个读取者才开始操作。因此:要提高MySQL的更新/插入效率,应首先考虑降低锁的竞争,减少写操作的等待时间。 (本专题在后面会讨论表设计的优化)本篇,要讲的优化是增删改。
那最近正在接手现在的对账系统,由于当前系统日均数量都在千万级,所以对账系统架构与之前架构完全不一样。
如果你打算好好学习一下 MySQL,性能优化肯定是绕不过去一个问题。当你撸起袖子准备开始的时候,突然发现一个问题摆在眼前,本地数据库中没那么大的数据量啊,几条数据优化个毛线啊。生产库里数据多,但谁敢直接在生产环境动手啊,想被提前优化吗?
查看代码打印1 SELECT * FROM table ORDER BY id LIMIT 1000,10; 以上SQL语句在原理上和在实际操作中是不会存在什么问题,可是当table表的数据量达到几十万以上的时候。上面的语句运行一遍,可能会要运行个十几秒的时间,而且当页数越靠后的话,运行的时间会越长。这个时候我们就须要找到一种更快的查询办法来替代这样的操作了。
这个案例实际上涉及到多个方面,需要我们系统地分析。让我们首先看看,从Excel中读取百万级数据并将其插入数据库时可能遇到的问题:
程序员,一类把有机食物转化为计算机程序的现代猿人智人。他们的主要工作是用计算机能理解的语言,教会电脑做各种各样人类不想做或者做不好的事情,用一行行代码,为人类的进步和技术的发展添砖Java,据说都喜欢穿格子衫(据说还有一部分喜欢穿女装)。 鲁迅先生曾经说过,世界上本没有双11,败家的剁手党多了,也就有了双11。 而作为为了各大电商平台默默提供背后的支持的程序员们,自然也是需要过节的,顺便还能测试一下自己写的程序,搭建的数据库稳不稳定,好不好用,那么,程序员们在双11,可以买哪些不落俗套的东西,显得
今天因为项目需要,想测试一下读取百万级数量数据的速度如何,无奈数据库没有现成符合要求的数据,网上百度一番有很都不错的文章,但是需要涉及到一些存储过程和用php代码什么的,虽说可以实现,但是感觉另外再弄这些比较麻烦,没有通用性,于是在几篇文章的参考下,.自己写了一段代码,直接生成的数据还是比较方便的,并且不是重复的数据.网上很多都是重复的,我只是做了一点小的修改,测试数据库是mysql 5.5,存储形式是MyISAM,每次生成的数据量是之前的一倍.测试的量有限,如有什么疑问欢迎评论指正.
1,更多的静态资源:将代码中的大量枚举(容器加载时写入map,放入本地缓存),数据库中的定义表(定时任务放入缓存),固定配置,HTML文件等静态化处理,缓存起来!
索引的本质:通过不断地缩⼩想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是⽤同⼀种查找⽅式来锁定数据。磁盘中数据的存取
我们在上一篇文章中提到了通过EasyExcel处理Mysql百万数据的导入功能(一键看原文),当时我们经过测试数据的反复测验,100万条放在excel中的数据,仅有4个字段的情况下,导入数据库平均耗时500秒,这对于我们来说肯定难以接受,今天我们就来做一次性能优化。
CynosDB产品简介。CynosDB,又称NewCDB,是由腾讯云和TEG基础架构部数据库技术团队联合打造的面向云计算2.0时代的新一代企业级分布式云数据库。在兼容开源数据库MySQL的生态体系下,它重新定义了MySQL分布式架构,从而在单实例极致性能、事务响应延时、存储扩展性以及可用性等关键技术指标上,达到商用级数据库级别;与此同时,它是面向通用硬件进行的软件极致优化,相比商用级数据库,它的性价比非常高,能把云计算共享经济普惠给万千腾讯云用户。
这里讨论的情况是在MySQL一张表的数据达到千万级别。表设计很烂,业务统计规则又不允许把sql拆成多个子查询。
亚信科技也做数据库?实际上亚信科技AntDB是我国最早的国产数据库产品之一,是在21世纪初国外品牌数据库无法满足我国暴涨的通信需求的情况下,为了帮助通信运用商更好地应对超高频度和超高密度的交易量,在其生产环境自研而来的数据库产品。AntDB数据库从2008年至今已在通信运营商核心业务系统运行15年,并形成了“多、久、快、稳”四大特点:
针对于这里所指的PHP工程师,是指主要以PHP进行Web系统的开发,没有使用其的语言工作过。工作经验大概在3~4年,普通的Web系统(百万级访问,千成级数据以内或业务逻辑不是特别复杂)开发起基本得心应手,没有什么问题。或者为初学者描述一下大概的方向。
+----+-------------+-------+------------+------+---------------+-----+---------+------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+
亲爱的读者朋友,今天我将为您分享一个技术挑战,即如何在处理百万级数据查询时进行优化,尤其是在不能使用分页的情况下。这是一个复杂而令人兴奋的话题,我们将深入探讨各种可能的解决方案,以帮助您更好地理解如何应对这类挑战。
CynosDB产品简介 CynosDB,又称NewCDB,是由腾讯云和TEG基础架构部数据库技术团队联合打造的面向云计算2.0时代的新一代企业级分布式云数据库。在兼容开源数据库MySQL的生态体系下,它重新定义了MySQL分布式架构,从而在单实例极致性能、事务响应延时、存储扩展性以及可用性等关键技术指标上,达到商用级数据库级别;与此同时,它是面向通用硬件进行的软件极致优化,相比商用级数据库,它的性价比非常高,能把云计算共享经济普惠给万千腾讯云用户。 CynosDB名称来源 Cynos源于拉丁语中的Cy
CynosDB产品简介。CynosDB,又称NewCDB,是由腾讯云和TEG基础架构部数据库技术团队联合打造的面向云计算2.0时代的新一代企业级分布式云数据库。在兼容开源数据库MySQL的生态体系下,它重新定义了MySQL分布式架构,从而在单实例极致性能、事务响应延时、存储扩展性以及可用性等关键技术指标上,达到商用级数据库级别;与此同时,它是面向通用硬件进行的软件极致优化,相比商用级数据库,它的性价比非常高,能把云计算共享经济普惠给万千腾讯云用户。 CynosDB名称来源。Cynos源于拉丁
领取专属 10元无门槛券
手把手带您无忧上云