首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    [编程经验] 基于bs4的拉勾网AI相关工作爬虫实现

    年初大家可能是各种跳槽吧,看着自己身边的人也是一个个的要走了,其实是有一点伤感的。人各有志吧,不多评论。这篇文章主要是我如何抓取拉勾上面AI相关的职位数据,其实抓其他工作的数据原理也是一样的,只要会了这个,其他的都可以抓下来。一共用了不到100行代码,主要抓取的信息有“职位名称”,“月薪”,“公司名称”,“公司所属行业”,“工作基本要求(经验,学历)”,“岗位描述”等。涉及的工作有“自然语言处理”,“机器学习”,“深度学习”,“人工智能”,“数据挖掘”,“算法工程师”,“机器视觉”,“语音识别”,“图像处理

    05

    Python实现单博主微博文本、图片及热评爬取

    文章简介 经常刷微博的同学肯定会关注一些有比较意思的博主,看看他们发的文字、图片、视频和底下评论,但时间一长,可能因为各种各样的原因,等你想去翻看某个博主的某条微博时,发现它已经被删除了,更夸张的是发现该博主已经被封号。那么如果你有很感兴趣的博主,不妨定期将Ta的微博保存,这样即使明天微博服务器全炸了,你也不用担心找不到那些微博了。(自己的微博也同理哦。) 看网上一些微博爬虫,都是针对很早之前的微博版本,而且爬取内容不全面,比如长微博不能完整爬取、图片没有爬取或没有分类,已经不适用于对当下版本微博内容的

    02

    [编程经验] 拉勾网爬虫数据的后续处理

    上一篇我们介绍了如何爬拉勾的数据,这次介绍一下如何分析爬下来的数据,本文以自然语言处理这个岗位为例。 上次那个爬虫的代码有一点问题,不知道大家发现没有,反正也没有人给我说。。然后后面我把我最后改好的代码附在本文的最后。 本文主要分析的是岗位职责和岗位要求,基本思路是先分词,然后统计词频,最后最词云展示出来。先看下效果 从这个图可以看出来,自然语言处理大多数需要掌握深度学习,需要用深度学习去解决问题,然后是工作经验,项目经验,以及对算法的理解。 首先分词,要正确分词,需要有一份高质量的词典,因为在岗位

    08
    领券