首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    影像组学初学者指南

    影像组学是放射学领域的一个相对较新的词,意思是从医学图像中提取大量的定量特征。人工智能(AI)大体上被定义为一组先进的计算算法,可以对所提供的数据模式进行学习,以便对未知的数据集进行预测。由于与传统的统计方法相比,人工智能具有更好的处理海量数据的能力,因此可以将影像组学方法与人工智能结合起来。总之,这些领域的主要目的是提取和分析尽可能多和有意义的深层定量特征数据,以用于决策支持。如今,影像组学和人工智能都因其在各种放射学任务中取得的显著成功而备受关注,由于担心被人工智能机器取代,大多数放射科医生对此感到焦虑。考虑到计算能力和大数据集可用性的不断发展进步,未来临床实践中人与机器的结合似乎是不可避免的。因此,不管他们的感受如何,放射科医生都应该熟悉这些概念。我们在本文中的目标有三个方面:第一,让放射科医生熟悉影像组学和人工智能;第二,鼓励放射科医生参与这些不断发展的领域;第三,为未来方法的设计和评估提供一套良好实践建议。本文发表在Diagnostic and Interventional Radiology杂志。

    02

    BrainStat:一个用于全脑统计和多模态特征关联的工具箱

    神经影像数据分析和解释需要结合多学科的共同努力,不仅依赖于统计方法,而且越来越多地依赖于与其他脑源性特征相关的关联,如基因表达、组织学数据、功能和认知结构。在这里,我们介绍了BrainStat,它是一个工具箱,包括(i)在体素空间和皮层空间的神经影像数据集中的单变量和多变量线性模型,以及(ii)死后基因表达和组织学的空间图谱,基于任务的功能磁共振成像元分析,以及几个常见静息态功能磁共振成像大脑皮层模板在内的多模态特征关联。统计和特征关联结合成一个关键的工具箱简化了分析过程并加速了跨模态研究。工具箱用Python和MATLAB实现,这两种编程语言在神经影像和神经信息学领域中广泛使用的。BrainStat是公开提供的,并包括一个可扩展的文件。

    02

    深度学习如何在医学影像分割上大显神通?——分割网络的三个改进思路

    一、医学影像分割有助于临床工作 图像分割在影像学诊断中大有用处。自动分割能帮助医生确认病变肿瘤的大小,定量评价治疗前后的效果。除此之外,脏器和病灶的识别和甄别也是一项影像科医生的日常工作。CT和磁共振的数据都是三维数据,这意味着对器官和病灶的分割就需要逐层进行。如果都是手工分割的话,会给医生带来繁重的工作量。实际上,已经有很多学者提出了许多医学影像的分割方法,但由于医学影像复杂,分割目标多变,仍有很多自动分割问题等待解决。 近年来深度学习在计算机视觉的各个细分邻域都取得了出色的成绩,那么,深度学习如何帮助医

    013

    大话脑影像之二十三:浅谈影像组学

    提笔写下浅谈影像组学几个字,我略微有点忐忑以及不安,史诗般的宏大题目,怕自己HOLD不住,但在这个满世界人工智能的时代,不做点严肃文学科普工作,不是我的风格,毕竟,我下楼吃碗面,老板都跟我说,根据他潜心研究搭建的“基于环境、气候、人群活动等指标的无监督多参数自我学习本店客流量预测模型”显示的结果,我今天会成为他第123个客户,我略带深沉的问他“那你的模型预测准确度有多少?”,老板谦虚的说道“我的模型一直在自我进化,目前大概徘徊在50.9%”,我说兄弟,是时代埋没了你,你应该去BAT做高级算法工程师或者去买彩票,面馆老板虽然嘴上没说,但我知道他心里一定一阵窃喜,因为今天他给我的牛肉面里多放了半块牛肉。

    04

    ​西湖大学人工智能与生物医学影像实验室招聘科研助理和博士后

    本期将为大家介绍西湖大学人工智能与生物医学影像实验室招聘科研助理和博士后的相关信息。 一、实验室介绍  实验室所在学校概况:西湖大学是一所由社会力量举办、国家重点支持的非营利性的新型研究型大学,主要开展基础前沿科学技术研究,坚持发展有限学科,注重学科交叉融合。学校按照 “高起点、小而精、研究型” 的办学定位,致力于集聚一流师资、打造一流学科、培育一流人才、产出一流成果,努力为国家科教兴国和创新驱动发展战略、建设高水平研究型大学作出突出贡献。 团队背景方面:西湖大学人工智能与生物医学影像实验室致力于将人工智

    02

    【犀牛鸟·学问】高成本标注背景下医疗数据的高效使用(201905)——CCF-腾讯犀牛鸟基金线上学术报告

    近年来,深度学习被广泛应用在医学影像分析的相关任务上,并获得巨大的性能提升。众所周知,深度学习需要大量数据来拟合巨大的参数空间,然而在大部分医疗场景中,获取高质量的医疗数据、以及高质量的标注是相当困难的。因此,应对医疗数据小样本特性,充分挖掘医疗数据的结构化信息,成为近年来学术界关注的热点。本次分享就是针对这一背景的一些尝试,主要从挖掘医疗数据的独有特性提升分割性能以及利用医疗数据的结构化先验训练自监督模型等角度切入,以期为大家提供若干可以参考的思路。 报告时间:2019年7月23日 19:30-21:0

    05

    体素科技:2018年,算法驱动下的医学影像分析进展

    自 2012 年 AlexNet 挑战 ImageNet 获得巨大成功以来,用于图像领域的深度学习算法以令人目不暇接的速度飞速演化着。通用图像领域中,有明确边界的问题,例如特定类别有标注数据的物体检测、定位、识别,乃至特定场景的图像生成、一定精确度内的图像分割,都出现了令人更新认知的深度学习解答。 目前,站在深度学习研究一线的计算机视觉研究者们,有相当一部分深入到更细分的、与应用场景联系更紧密的任务中,同时扩展算法能够覆盖的数据类型。 2018 年,在医疗影像这个分支中,来自加州的人工智能医疗公司体素科技,结合自身产品线的开发路径,发表了多篇论文,论文探讨了如何利用深度学习算法临床决策支持:例如用端到端算法处理影像中分割问题、 配准问题,以及如何在标注数据有限,且迁移学习困难的情况下,利用代理监督和联合训练获得更好的模型效果。以下为论文介绍:

    04
    领券