首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    DQN系列(2): Double DQN算法原理与实现

    问题阐述 1.1 过估计问题现象 Q-learning算法在低维状态下的成功以及DQN和target DQN的效果已经很好了,但是人们发现了一个问题就是之前的Q-learning、DQN算法都会过高估计...DQN算法非常重要的两个元素是“经验回放”和“目标网络”,通常情况下,DQN算法更新是利用目标网络的参数 ,它每个 步更新一次,其数学表示为: 上述的标准的Q-learning学习和DQN中均使用了...,Double DQN则使用了DQN的思想,直接利用目标网络()进行更新。...以上基本上是本论文的内容,下面我们借助实验进行code的Double DQN算法。其实本部分的复现只是将更新的DQN的目标函数换一下。对于论文中的多项式拟合并不做复现。 3....算法和DQN算法的区别。

    2.4K10

    使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)

    本文旨在探究将PyTorch Lightning应用于激动人心的强化学习(RL)领域。...在本文中,我们将讨论: 什么是lighting以及为什么要将它应用于RL 标准DQN模型简介 使用Lightning构建DQN的步骤 结果和结论 本文代码将在文章最后发布。...DQN ? 在我们进入代码之前,让我们快速回顾一下DQN的功能。DQN通过学习在特定状态下执行每个操作的值来学习给定环境的最佳策略。这些值称为Q值。...这是DQN功能的一个高度概述。 轻量化DQN ?...结论 现在您已经看到了在强化学习项目中利用PyTorch Lightning的力量是多么简单和实用。 这是一个非常简单的例子,只是为了说明lighting在RL中的使用,所以这里有很多改进的空间。

    2K10

    强化学习:DQN与Double DQN讨论

    这个算法就是著名的 DQN 算法,DQN 是第一个成功地将深度学习和强化学习结合起来的模型,本文将对DQN及其变种进行简单的讨论。...DQN利用深度卷积神经网络逼近值函数; DQN利用了经验回放训练强化学习的学习过程; DQN独立设置了目标网络来单独处理时间差分算法中的TD偏差。 下面,我们对这三个方面做简要介绍。 1 ....DQN利用卷积神经网络逼近行为值函数。 如图2所示为DQN的行为值函数逼近网络。与线性逼近不同,线性逼近指值函数由一组基函数和一组与之对应的参数相乘得到,值函数是参数的线性函数。...最后我们给出DQN的伪代码,如图5所示。 ? 图5 DQN的伪代码 下面我们对DQN的伪代码逐行说明。...Double DQN 上面我们讲了第一个深度强化学习方法DQN,DQN的框架仍然是Qlearning。DQN只是利用了卷积神经网络表示动作值函数,并利用了经验回放和单独设立目标网络这两个技巧。

    1.6K10

    Double DQN——解决DQN中的过估计问题

    1.前言 本篇教程是基于Deep Q network(DQN)的教程,缩减了在DQN方面的介绍,着重强调Double DQN和DQN的不同之处。...接下来我们说说为什么会有Double DQN这种算法,所以我们从Double DQN相对于Natural DQN(传统DQN)的优势说起。...所以Double DQN的想法就是引入另一个神经网络来打消一些最大误差的影响。而DQN中本来就有两个神经网络,所以我们就可以利用一下DQN这个地理优势。...2.1更新方法 这里的代码都是基于之前的DQN中的代码,在RL_brain中,我们将class的名字改成DoubleDQN,为了对比Natural DQN,我们也保留原来大部分的DQN的代码。...我们在init中加入一个double_q参数来表示使用的是Natural DQn还是Double DQN,为了对比的需要,我们的tf.Session()也单独传入,并移除原本在 DQN 代码中的这一句:

    2.1K20

    让 Q 值估计更准确:从 DQN 到 Double DQN 的改进方案

    这篇文章要解决的就是这个问题,内容包括:DQN 为什么会过估计、Double DQN 怎么把动作选择和评估拆开、Dueling DQN 怎么分离状态值和动作优势、优先经验回放如何让采样更聪明,以及用 PyTorch...,a))] ≈ maxₐ E[Q(s,a)] (无偏) 从 DQN 到 Double DQN,只需要改一行: # DQN 目标 next_q_values=target_network(next_states...实现:Double DQN 扩展 DQN Agent classDoubleDQNAgent(DQNAgent): """ Double DQN: 通过解耦动作选择和评估来减少过估计偏差...DQN 和 Dueling DQN 的智能体。...实践建议 变体选择对比 Double DQN 跑得比 DQN 还差?可能是训练不够长(Double DQN 起步偶尔慢一点),或者目标网络更新太频繁,或者学习率偏高。

    15610

    Pytorch深度学习教程在此,手把手教你从DQN到Rainbow

    废话不多说,赶紧领取教程看看里头具体都有哪些宝藏知识吧~ 步步深入RL 这份Pytorch强化学习教程一共有八章,从DQN(Deep Q-Learning)开始,步步深入,最后向你展示Rainbow到底是什么...DQN DeepRL入门第一步,当先了解DQN(Deep Q-Learning)。这是DeepMind提出的一种算法,2015年登上Nuture。...Double DQN Double DQN(DDQN)是DQN的一种改进。在DDQN之前,基本所有的目标Q值都是通过贪婪法得到的,而这往往会造成过度估计(overestimations)的问题。...Categorical DQN(C51) Categorical DQN是一种采用分布视角来设计的算法,它建模的是状态-动作价值Q的分布,这样学习的结果会更加准确。.../blob/master/06.categorical_dqn.ipynb 7.

    62620

    强化学习从基础到进阶-案例与实践:深度Q网络-DQN、double DQN、经验回放、rainbow、分布式DQN

    强化学习从基础到进阶-案例与实践[4]:深度Q网络-DQN、double DQN、经验回放、rainbow、分布式DQN 强化学习全系列超详细算法码源见文章顶部 传统的强化学习算法会使用表格的形式存储状态价值函数...深度Q网络(deep Q-network,DQN)是指基于深度学习的Q学习算法,主要结合了价值函数近似与神经网络技术,并采用目标网络和经历回放的方法进行网络的训练。...第一个技巧是双深度Q网络(double DQN,DDQN)。为什么要有DDQN呢?因为在实现上,Q 值往往是被高估的。...7.2 竞争深度Q网络 第二个技巧是竞争深度Q网络(dueling DQN),相较于原来的 深度Q网络,它唯一的差别是改变了网络的架构。Q网络输入状态,输出的是每一个动作的 Q 值。...噪声深度Q网络(noisy DQN)比DQN的性能好很多。紫色的线代表 DDQN,DDQN 还挺有效的。

    1.3K22

    Pytorch深度学习

    废话不多说,赶紧领取教程看看里头具体都有哪些宝藏知识吧~ 步步深入RL 这份Pytorch强化学习教程一共有八章,从DQN(Deep Q-Learning)开始,步步深入,最后向你展示Rainbow到底是什么...DQN DeepRL入门第一步,当先了解 DQN(Deep Q-Learning) 。这是DeepMind提出的一种算法,2015年登上Nuture。...Double DQN Double DQN(DDQN)是DQN的一种改进。在DDQN之前,基本所有的目标Q值都是通过贪婪法得到的,而这往往会造成过度估计(overestimations)的问题。...Categorical DQN(C51) Categorical DQN是一种采用分布视角来设计的算法,它建模的是状态-动作价值Q的分布,这样学习的结果会更加准确。.../blob/master/06.categorical_dqn.ipynb 7.

    87931

    强化学习(十一) Prioritized Replay DQN

    对应的算法是Prioritized Replay DQN。     ...Prioritized Replay DQN之前算法的问题     在Prioritized Replay DQN之前,我们已经讨论了很多种DQN,比如Nature DQN, DDQN等,他们都是通过经验回放来采样...Prioritized Replay DQN算法的建模     Prioritized Replay DQN根据每个样本的TD误差绝对值$|\delta(t)|$,给定该样本的优先级正比于$|\delta...由于引入了经验回放的优先级,那么Prioritized Replay DQN的经验回放池和之前的其他DQN算法的经验回放池就不一样了。因为这个优先级大小会影响它被采样的概率。...下一篇我们讨论DQN家族的另一个优化算法Duel DQN,它将价值Q分解为两部分,第一部分是仅仅受状态但不受动作影响的部分,第二部分才是同时受状态和动作影响的部分,算法的效果也很好。

    1.2K40
    领券