首页
学习
活动
专区
圈层
工具
发布

PyTorch模型静态量化、保存、加载int8量化模型

所以,模型量化就是将训练好的深度神经网络的权值,激活值等从高精度转化成低精度的操作过程,例如将32位浮点数转化成8位整型数int8,同时我们期望转换后的模型准确率与转化前相近。...PyTorch模型训练完毕后静态量化、保存、加载int8量化模型 1....PyTorch模型量化方法 Pytorch模型量化方法介绍有很多可以参考的,这里推荐两篇文章写的很详细可以给大家一个大致的参考 Pytorch的量化 https://zhuanlan.zhihu.com.../p/299108528 官方量化文档 https://pytorch.org/docs/stable/quantization.html#common-errors Pytorch的量化大致分为三种...pth_to_int.py是对Pytorch的float32模型转成int8模型。 evaluate_model.py里加载int8模型进行推理。 3.

8.2K42
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    INT8量化训练

    【导读】本文聊了两篇做INT8量化训练的文章,量化训练说的与quantization-aware Training有区别,量化训练指的是在模型训练的前向传播和后向传播都有INT8量化。...论文:《Distribution Adaptive INT8 Quantization for Training CNNs》 会议:AAAI 2021 论文:《Towards Unified INT8...Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference》详细的内容在链接中: MXNet实现卷积神经网络训练量化 Pytorch...总结:Distribution Adaptive INT8比Unified INT8多了一个先验,来构建分析方程。方法上,都是对梯度下手,修正梯度的值,都有对梯度进行截断。...另外,Unified INT8对梯度误差分析是layer-wise的,即不是上述Distribution Adaptive INT8那种channel-wise的方式。

    1.5K00

    ONNX与TensorRT系列

    -– 在实际的部署过程中,难免碰到模型无法用原生 PyTorch 算子表示的情况。这个时候,我们就得考虑扩充 PyTorch,即在 PyTorch 中支持更多 ONNX 算子。...而要使 PyTorch 算子顺利转换到 ONNX ,我们需要保证以下三个环节都不出错: · 算子在 PyTorch 中有实现 · 有把该 PyTorch 算子映射成一个或多个 ONNX 算子的方法 ·...其中最坏的情况是:我们定义了一个全新的算子,它不仅缺少 PyTorch 实现,还缺少 PyTorch 到 ONNX 的映射关系。...因为你训练是需要反向传播和梯度下降的,int8就非常不好做了,举个例子就是我们的学习率一般都是零点几零点几的,你一个int8怎么玩?其次大家的生态就是浮点模型,因此直接转换有效的多啊!...(35条消息) 基于tensorRT方案的INT8量化实现原理_alex1801的博客-CSDN博客_tensorrt量化原理 ----

    1.9K10

    创建pytorch环境_Udacity pytorch

    搭建深度学习环境所需资料 (md 我就安个神经网络的环境简直要了我的狗命) 不过还是认识到很重要的一点,在书上找再多的资料 都不如自己亲身实践一下 还是要总结一下学了what 不然白捯饬了 1、cuda,pytorch...,pyg,pip都需要安装(软件啊亲)(不搞这一出我还一直以为cuda是硬件) 2、pycharm必须要配置python的环境也必须要配置pytorch的环境才能跑GCN的程序 3、pip是一个应用商店...3、pytorch是个啥子玩意 是一个深度学习的框架,大体来说就是提供一个借口,比如我想要搭个神经网络,调用个接口,他分分钟就给你搞定,又比如我想要 加一个优化器反向传播改参数,加一个optimizer...nummpy:是一个用于矩阵运算的库,pytorch可以替代nummpy进行深度学习的运算 在window下安装pip pip更换国内镜像源 安装pytorch Anaconda+Pycharm...环境下的PyTorch配置方法 如何使用pycharm新建项目 在pycharm中添加python虚拟环境 Pycharm中打开Terminal方式 不是内部或外部命令也不是可运行的程序或批处理

    97020

    YOLOv5模型部署TensorRT之 FP32、FP16、INT8推理

    INT8量化与推理TensorRT演示 TensorRT的INT量化支持要稍微复杂那么一点点,最简单的就是训练后量化。...最终得到的INT8量化engine文件的大小在9MB左右。 数据太少,只有128张, INT8量化之后的YOLOv5s模型推理结果并不尽如人意。...这里,我基于YOLOv5s模型自定义数据集训练飞鸟跟无人机,对得到模型,直接用训练集270张数据做完INT8量化之后的推理效果如下: 量化效果非常好,精度只有一点下降,但是速度比FP32的提升了1.5...Pytorch系统化学习路线图  推荐阅读  CV全栈开发者说 - 从传统算法到深度学习怎么修炼 2022入坑深度学习,我选择Pytorch框架!...Pytorch轻松实现经典视觉任务 教程推荐 | Pytorch框架CV开发-从入门到实战 OpenCV4 C++学习 必备基础语法知识三 OpenCV4 C++学习 必备基础语法知识二 OpenCV4.5.4

    6.7K50
    领券