首页
学习
活动
专区
圈层
工具
发布

DeepSeek-OCR-2 开源 OCR 模型的技术

DeepSeek-OCR-2开源OCR模型的技术OCR应用的场景和类型很广,本次使用Qwen2的架构,解决看的全(扫码方式优化)、看的的准(内容识别、视觉标记、降低重复率),多裁剪策略提取核心信息。...和其他OCR模型项目还是看自己的引用场景,通用场景还是建议使用最新的模型,识别准、理解准、排版准。2025-2026年,OCR(光学字符识别)领域迎来了开源大模型的黄金时代。...输出)DeepSeek-OCR-2更专注于文档到结构化文本的转换,强调与下游LLM的协同。...):DeepSeek-OCR-2的上下文压缩特性可以显著降低文档预处理成本六、总结与展望DeepSeek-OCR-2和HunyuanOCR的开源,标志着OCR技术进入了一个新的阶段——从传统的"字符识别...对于开发者而言,2026年是OCR技术选型最优的一年——既有成熟的传统方案,也有前沿的端到端模型,且都是免费开源的。

19010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    调用tesseact-ocr的traineddata模型进行ocr文字识别

    【框架地址】 https://github.com/charlesw/tesseract 【算法介绍】 Tesseract OCR是一个开源的光学字符识别引擎,它可以将图像中的文字转换成可编辑和可搜索的文本格式...自那时起,它一直在不断的更新和改进,成为了世界上最流行的OCR引擎之一。...Tesseract的OCR过程大致可以分为几个阶段:预处理、文字检测、文字分割、文字识别和后处理。 特点 多语言支持 Tesseract支持100多种语言的文字识别,包括多种字母和符号系统。...应用场景 Tesseract OCR可以应用于多种文本识别场景,如: 文档数字化:将纸质文档转化为电子文档,便于存储、检索和编辑。...尽管Tesseract在某些复杂场景下的识别准确率可能不及专业的商业OCR软件,但其开源免费的特性以及不断进步的技术,使其在许多情况下仍然是首选的OCR工具。

    45910

    OCR识别

    最近作者项目中用到了身份证识别跟营业执照的OCR识别,就研究了一下百度云跟腾讯云的OCR产品接口。...1.腾讯云OCR ---- 收费:身份证OCR和营业执照OCR接口,每个接口每个月各有1000次的免费调用 接口说明: 身份证OCR接口 -  https://cloud.tencent.com/document...创建完之后就可以拿到appId,API Key,Secret Key,就可以调用百度提供的api了 收费:身份证OCR和营业执照OCR接口,每个接口每天各有500次的免费调用 接口说明: 身份证OCR....E5.88.AB 身份证OCR  只列出后端的代码,前端代码跟腾讯的一样,只不过前后面身份证枚举值不一样,参考接口文档说明。...,请关注“写代码的猿”订阅号以便第一时间获得最新内容。

    26.6K51

    OCR技术的昨天今天和明天!2023年最全OCR技术指南!

    本文将介绍该技术的前世今生,一览该技术的阶段性发展:传统OCR技术统治的过去,深度学习OCR技术闪光的现在,预训练OCR大模型呼之欲出的未来!...一、OCR的前世:传统OCR技术统治的过去传统OCR技术的工作原理OCR的运作方式可以类比为人类阅读文本和识别模式的能力。传统OCR技术通过电脑视觉、模式识别技术来自动识别并提取图像或文档中的字符。...这些都是确保OCR系统能准确识别和提取文字的关键因素。因此,深入理解和掌握图像预处理步骤和技术,对于构建一个高效准确的OCR系统至关重要。2.字符分割字符分割是OCR过程中的一个重要步骤。...传统OCR的局限性虽然传统的光学字符识别(OCR)技术在许多场景中表现得相当出色,但这种技术确实存在一些局限性,尤其是在比较复杂或者具有挑战性的情况下。...这也是为什么越来越多的研究者开始探索使用深度学习等更先进的技术来改进OCR系统。二、OCR的今生:深度学习OCR技术闪光的现在传统OCR技术在处理复杂的图像和不规则形状的文本时,效果并不理想。

    3.9K11

    OCR Tool PRO Mac(OCR光学字符识别)

    如何提取图片中的文字?推荐这款OCR光学字符识别工具OCR Tool PRO,以卓越的准确性和速度从图像和 PDF 中提取文本。...抓取图像 + PDF + 抓取屏幕区域 + 从 iPhone/iPad 捕获图像 + 设置 + OCR + 将文本复制到剪贴板 + 使用文本文件和 PDF 导出!...OCR Tool PRO Mac图片OCR Tool PRO版软件功能OCR 工具允许在选定区域中捕获具有任何文本的屏幕的一部分。它可以立即被识别并复制到剪贴板。...OCR 工具是一种简单、易于使用、超级高效且尊重您的隐私(不会从您的设备中获取数据)。...主要特点抓取屏幕区域以实现超高效的 OCR多次抓取屏幕区域以快速工作从 iPhone/iPad 和扫描仪捕获图像以进行即时 OCR 并将结果复制到剪贴板。

    20.1K20

    OCR技术综述

    最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。 什么是OCR?...文字识别是计算机视觉研究领域的分支之一,而且这个课题已经是比较成熟了,并且在商业中已经有很多落地项目了。比如汉王OCR,百度OCR,阿里OCR等等,很多企业都有能力都是拿OCR技术开始挣钱了。...太多太多的应用了,OCR的应用在当今时代确实是百花齐放啊。 OCR的分类 如果要给OCR进行分类,我觉得可以分为两类:手写体识别和印刷体识别。...我列了一下可以采取的策略: 使用谷歌开源OCR引擎Tesseract 使用大公司的OCR开放平台(比如百度),使用他们的字符识别API 传统方法做字符的特征提取,输入分类器,得出OCR模型 暴力的字符模板匹配法...在接下来的博客中,我将在工程上一一实现以上说到的几种OCR的识别方法~~ OCR的发展 在一些简单环境下OCR的准确度已经比较高了(比如电子文档),但是在一些复杂环境下的字符识别,在当今还没有人敢说自己能做的很好

    16.1K92

    OCR技术简介

    亦即将图像中的文字进行识别,并以文本的形式返回。 OCR的应用场景 根据识别场景,可大致将OCR分为识别特定场景的专用OCR和识别多种场景的通用OCR。...比如现今方兴未艾的证件识别和车牌识别就是专用OCR的典型实例。通用OCR可以用于更复杂的场景,也具有更大的应用潜力。但由于通用图片的场景不固定,文字布局多样,因此难度更高。...OCR的技术路线 典型的OCR的技术路线如下图所示 其中影响识别准确率的技术瓶颈是文字检测和文本识别,而这两部分也是OCR技术的重中之重。...[11] 端到端的OCR 与检测-识别的多阶段OCR不同,深度学习使端到端的OCR成为可能,将文本的检测和识别统一到同一个工作流中。...[12] 总结 尽管基于深度学习的OCR表现相较于传统方法更为出色,但是深度学习技术仍需要在OCR领域进行特化,而其中的关键正式传统OCR方法的精髓。

    18.4K20

    OCR技术简介

    亦即将图像中的文字进行识别,并以文本的形式返回。 OCR的应用场景 根据识别场景,可大致将OCR分为识别特定场景的专用OCR和识别多种场景的通用OCR。...比如现今方兴未艾的证件识别和车牌识别就是专用OCR的典型实例。通用OCR可以用于更复杂的场景,也具有更大的应用潜力。但由于通用图片的场景不固定,文字布局多样,因此难度更高。...OCR的技术路线 典型的OCR的技术路线如下图所示 ? 其中影响识别准确率的技术瓶颈是文字检测和文本识别,而这两部分也是OCR技术的重中之重。...Attention OCR的网络结构[11] 端到端的OCR 与检测-识别的多阶段OCR不同,深度学习使端到端的OCR成为可能,将文本的检测和识别统一到同一个工作流中。...FOTS的总体结构[12] 总结 尽管基于深度学习的OCR表现相较于传统方法更为出色,但是深度学习技术仍需要在OCR领域进行特化,而其中的关键正式传统OCR方法的精髓。

    8.6K50

    超全的OCR数据集

    路标上的文字最多可以跨越三行。每一个路标都有一个规范的抄本。...室内图像以标牌、门牌、警示牌为主,室外图像以复杂背景下的导板、广告牌为主。图像的分辨率从1296x864到1920x1280不等。由于文本的多样性和图像中背景的复杂性,数据集是具有挑战性的。...文本有不同的语言(中文、英文或两者的混合)、字体、大小、颜色和方向。背景可能包含植被(如树木和灌木丛)和重复的图案(如窗户和砖块),这些图案与文本没有太大的区别。...5、ICDAR 数据集下载链接:https://rrc.cvc.uab.es/ ICDAR作为一个Challenge性质的平台,包含了2011~2019年各类OCR相关的数据集。 ? ?...数据集涵盖不同的脚本和语言(西班牙语、法语、英语),将在每一帧的单词级别提供本地化的基本事实。 ?

    8.7K11

    RapidOCR:快速、准确的OCR识别

    在当今信息化时代,光学字符识别(OCR)技术已经成为了数据处理和信息提取的重要工具。RapidOCR是一个高效的OCR框架,基于深度学习技术,能够快速、准确地识别文本。...本文将深入分析RapidOCR模块的应用,提供Python代码示例,并探讨其在实际项目中的应用场景。什么是RapidOCR?RapidOCR是一个开源的OCR工具,旨在提供快速、准确的文本识别能力。...它支持多种语言的文本识别,并且可以处理各种复杂的图像场景。RapidOCR的核心优势在于其高效的模型和简单易用的API,使得开发者能够快速集成OCR功能。...以下是加载模型的示例代码:from rapidocr import RapidOCR# 创建OCR对象ocr = RapidOCR()# 加载模型ocr.load_model()识别文本加载模型后,可以使用...• 适应性:测试RapidOCR在不同场景、不同语言下的识别效果。总结RapidOCR作为一个高效的OCR工具,具有广泛的应用前景。通过简单的API接口,开发者可以快速集成OCR功能,提升工作效率。

    5.9K13

    OCR识别技术

    前言一、OCR是什么?OCR是光学字符识别的缩写,通俗来讲就是计算机可以通过图像来识别和处理文字信息。二、OCR应用领域OCR识别API对接步骤1、接入前文档查看需要什么协议?...args) throws Exception{ String host = "https://open.expauth.com"; String path = "/v2/ocr...,"cusNo":"MER20230227354812341234","subMerNo":"MER20230227354812341234","reqNo":"1654251116079"}三、好用的OCR...API为了简化开发者的工作,许多云服务提供商提供了强大且易于集成的OCR API1.文字OCR文字识别场景服务商提供的OCR API可选择性比较多,开发者可以根据自己的需求选择适合自己的服务商。...总结OCR识别技术让信息处理变得更加便捷。目前OCR技术已经广泛应用于我们的生活和工作中。

    3.9K10

    OCR—探寻文字真实的容颜

    OCR技术的过去和现在: OCR(光学字符识别技术),是通过扫描仪或相机等光学输入设备获取纸张上的文字、图片信息,利用各种模式识别算法对文字的形态结构进行分析,形成相应的字符特征描述,通过合适的字符匹配方法将图像中的文字转换成文本格式...当前国内该技术做得比较好的有:文通、汉王,丹青(中国台湾公司)、蒙括(中国台湾公司),商业化应用比较好的软件有:清华OCR、 尚书七号、中文紫光OCR等,国外的公司当然属ABBYY和IRIS。...这些技术和产品的衍生、改进都标志这人们对OCR技术需求的不断变化。...下面简单介绍下我们研发的OCR系统,其整体框架如(图一)所示: (图一) OCR整体 OCR系统的五大部分: 1.图像预处理:该阶段主要针对输入的图像进行局部自适应去噪...在未来OCR研究的道路上,我们不仅要关注技术性能的提升,更需要结合用户、产品以及市场需求来定位我们的研究方向,寻求更多技术的交叉融合,为OCR开辟更广阔的技术和市场空间。

    8.7K80

    基于Tesseract组件的OCR识别

    背景以及介绍 欲研究C#端如何进行图像的基本OCR识别,找到一款开源的OCR识别组件。该组件当前已经已经升级到了4.0版本。...为了让不同的语言均能够使用Tesseract进行OCR识别,Tesseract也是开放了API并产生了诸如Java、C#、Python等主流语言在内的封装版本。...所以目前的项目结构如下: Demo实验 环境准备 文本识别数据包准备 因为图像识别本身需要文本识别数据进行匹配,所以我们需要下载对应Tesseract官方的文本数据包: https://tesseract-ocr.github.io.../tessdoc/Data-Files 注意,针对不同版本的Tesseract-OCR(3.X和4.X底层的实现方式不同,所以文本识别数据包是不同的),我们需要找到对应的不同的文本训练数据包,官网为了更好的兼容性...这样一来,虽然该组件还比不上市面上大多数的商业OCR识别,但是我们可以使用训练数据,来训练适用于我们特定业务的文字识别(比如XX码的提取之类)

    1.5K20
    领券