从事大数据行业的人都清楚,R是用于统计分析、绘图的语言和操作环境,同时它还是一个用于统计计算和统计制图的优秀工具。特意整理出从入门到进阶的相关书籍,以供参考。
R:为什么选择我?而不是其他高级语言,比如Python,Java,C,C++....那么多编程语言?
R是统计领域广泛使用的诞生于1980年左右的S语言的一个分支。可以认为R是S语言的一种实现。而S语言是由AT&T贝尔实验室开发的一种用来进行数据探索、统计分析和作图的解释型语言。最初S语言的实现版本主要是S-PLUS。S-PLUS是一个商业软件,它基于S语言,并由MathSoft公司的统计科学部进一步完善。后来新西兰奥克兰大学的Robert Gentleman和Ross Ihaka及其他志愿人员开发了一个R系统。由“R开发核心团队”负责开发。R可以看作贝尔实验室(AT&T BellLaboratories)的RickBecker,JohnChambers和AllanWilks开发的S语言的一种实现。当然,S语言也是S-Plus的基础。所以,两者在程序语法上可以说是几乎一样的,可能只是在函数方面有细微差别,程序十分容易地就能移植到一程序中,而很多一的程序只要稍加修改也能运用于R。
在一篇论文中,最引人注目的除了标题和摘要,便是嵌于文中的各种图表了。而图形凭借其更为直观的表达效果一直备受学术界青睐,可以说如何用更为美观的图形更恰当、更全面、更精准地展现研究结果,是所有研究者一直在探索的课题。
👆点击“博文视点Broadview”,获取更多书讯 R 是数据科学领域的一门大热的编程语言,可以说它是专门为统计分析而生的。 相比起其他语言,R 简单易学,代码可读性强,并且不需要搭建复杂的编程环境,对初学者非常友好。 今天就和大家分享两本学习R的宝藏图书,不仅能够帮你学习统计知识,还能提升代码编写能力,助你从入门到精通! 01 《R速成:统计分析和科研数据分析快速上手》 《R速成:统计分析和科研数据分析快速上手》是挪威一位心理学教授和神经科学教授联手写成,第一次在国内推出中文版,由庄亮亮和赵子
统计学与数据挖掘书籍推荐 1.1《 The Elements of Statistical Learning 》,神书,不解释 1.2《实用多元统计分析》,从线性代数的角度详细讲解算法,例子简单,国外课程教材 1.3《统计学习方法》,李航著,统计学习算法必备书籍 1.4《从零进阶!数据分析的统计基础》 CDA 数据分析师系列丛书 1.5《统计学:从数据到结论》 1.6《数据挖掘:概念与技术》 数据分析软件篇 SQL 书籍推荐 《 MySQL 必知必会》 SPSS 推荐书籍 《SPSS统计分析基
R语言什么鬼?可以用来做什么?和大数据又有什么关系?有没有好的课程推荐啊?学大数据一定要懂R语言么?…… 网络上太多类似的问题,如果恰好你也有类似的疑惑,那么希望阅读本文之后你不再困惑~ 〓R语言简介: R是一套完整的数据处理、计算和制图软件系统。 其功能包括: 数据存储和处理系统; 数组运算工具(其向量、矩阵运算方面功能尤其强大); 完整连贯的统计分析工具; 优秀的统计制图功能; 简便而强大的编程语言:可操纵数据的输入和输出,可实现分支、循环,用户可自定义功能。 与其说R是一种统计软件,还不如说R是一种
什么是R语言? R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R本来是由来自新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发(也因此称为R),现在由“R开发核心团队”负责开发。R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacO
R语言是一种自由、跨平台的编程语言和软件环境,专门用于统计计算和数据可视化。它具有丰富的数据处理、统计分析和图形展示功能,被广泛应用于数据科学、机器学习、统计建模等领域。
作者 CDA 数据分析师 数据科学家被认为是21世纪最性感也是最具发展前景的职业,目前有75%左右的数据科学家使用R语言,有35%左右的数据科学家将R语言作为首选统计分析工具。今天,我们来了解一下
在当下,人工智能的浪潮席卷而来。从AlphaGo、无人驾驶技术、人脸识别、语音对话,到商城推荐系统,金融业的风控,量化运营、用户洞察、企业征信、智能投顾等,人工智能的应用广泛渗透到各行各业,也让数据科学家们供不应求。Python和R作为机器学习的主流语言,受到了越来越多的关注。数据学习领域的新兵们经常不清楚如何在二者之间做出抉择,本文就语言特性与使用场景为大家对比剖析。 一.Python和R的概念与特性 Python是一种面向对象、解释型免费开源高级语言。它功能强大,有活跃的社区支持和各式各样的类库,同时具
我之前预告过的 R 语言新书,起名为《R语言编程—基于tidyverse》,本书的目的是为了在国内推广 R 语言和 R 语言最新技术。本书非常适合新手 R 语言入门,老手 R 知识汰旧换新。
简介 多元统计分析:多维标度 MDS 分析 案例 各地区工资水平的多维标度分析 library(openxlsx) Case12 = read.xlsx("../Res/mvcase5.xlsx", "Case12", rowNames = T) head(Case12) image-20201212193858279 # isoMDS 需 MASS library(MASS) D = dist(Case12) mds = isoMDS(D, k = 2);mds image-20201212
R是GNU的一个开源工具,具有S语言血统,擅长统计计算和统计制图。由Revolution Analytics发起的一个开源项目RHadoop将R语言与Hadoop结合在一起,很好发挥了R语言特长。广大R语言爱好者借助强大工具RHadoop,可以在大数据领域大展拳脚,这对R语言程序员来说无疑是个喜讯。作者从一个程序员的角度对R语言和Hadoop做了一次详细的讲解。 以下为原文: 前言 写过几篇关于RHadoop的技术性文章,都是从统计的角度,介绍如何让R语言利用Hadoop处理大数据。今天决定反过来,从计算机
作者 CDA 数据分析师 数据科学家被认为是21世纪最性感也是最具发展前景的职业,目前有75%左右的数据科学家使用R语言,有35%左右的数据科学家将R语言作为首选统计分析工具。今天,带大家了解一下这门富有魅力的数据科学语言。 一、R 语言环境 R 是一款为数据分析而设计的语言,其功能集数据操作、数学计算和数据可视化为一体,其特点在于: 1.有效得进行数据处理与存储 2.对数组,矩阵运算处理的支持 3.包含大量专门用于数据分析、统计分析和数据挖掘的实现方法 4.强大的数据可视化能力 二、R 与数据分析 经过
有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 R是GNU的一个开源工具,具有S语言血统,擅长统计计算和统计制图。由Revolution Analytics发起的一个开源项目RHadoop将R语言与Hadoop结合在一起,很好发挥了R语言特长。广大R语言爱好者借助强大工具RHadoop,可以在大数据领域大展拳脚,这对R语言程序员来说无疑是个喜讯。作者从一个程序员的角度对R语言和Hadoop做了一次详细的讲解。 以下为原文: 前言 写过几篇关于RHadoop的技术性文章
知乎有人提问,R 和 Python (numpy scipy pandas) 用于统计学分析,哪个更好?
摘要:Revolution Analytics已经提供了一个商业级R语言发行版Revolution R Enterprise,作为一个用于统计分析和基于数据图形渲染的开源编程语言,R语言人气甚高,已在金融、制药、新闻传媒和市场营销等行业获广泛使用。 【编者按】“收集数据只是第一步,分析数据才是关键”,R语言的发展满足了大数据时代统计编程的需求,然而开源环境下的R语言面临着诸多问题,商业支持或许会给R语言带来更好的发展,Revolution Analytics首先推出了AdviseR,CF
在上一次的推文中,我们已经介绍了很多应用广泛的图形。它们主要用于展示单类别型或连续型变量的分布情况。这一次,我们来讨论一下怎么利用图形展示双变量间关系(二元关系)和多变量间关系(多元关系)。展示变量关系的图形有很多,我们今天就主要介绍几种。
第一章 R简介 本章概要 1安装R 2理解R语言 3运行R程序 本章所介绍的内容概括如下。 一个典型的数据分析步骤如图1所示。 图1:典型数据分析步骤 简而言之,现今的数据分析要求我们从多种数据源中获取数据、数据合并、标注、清洗和分析,并且把分析的结果进行展示,形成报告或者系统,辅助决策。R能够满足现今数据分析的要求。 为什么用R? R是一个适合统计分析和绘图的环境与语言。它是开源、免费的,获得世界范围社区支持。统计分析和绘图工具已经很多了,例如:SPSS,SAS,Excel,Stata和Minit
以下5种语言NODE、LUA、Python、Ruby、R ,哪个在2014年的应用前景会更好? 我毫不犹豫的选择R。R不仅是2014年,也是以后更长一段时间的主角。 1. 我的编程背景 本人程序员、架构师,从编程入门到今天,一直深信着Java是改变世界的语言,Java已经做到了,而且一直很辉煌。但当Java的世界越来越大,变得无所不能的时候,反而不够专业,给了其他语言发展的机会。 本次要比较要5种编程语言(NODE,LUA,Python,Ruby,R)
R语言多元分析系列之一:主成分分析 主成分分析(principal components analysis, PCA)是一种分析、简化数据集的技术。它把原始数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是在处理观测数目小于变量数目时无法发挥作用,例如基
作者:Chiffon 来源:七风阁 http://chiffon.gitcafe.io/2015/01/10/MLE.html 经常有人问我怎么才能成一个数据分析师。我以为,要想做数据分析工作,需要
如果你是一位数据分析师,必须学习并掌握结构化查询语言——SQL。但它主要用于查询检索数据,所以往往还需要掌握一门编程语言。
【编者按】随着大数据被更多的企业采用,大数据分析算法编写和生产语言也得到了广泛的关注。而在不知不觉中,开源统计语言R已基本成为大数据科学家和开发者的必备技能。在所有编程语言和技巧中,人气急剧上升。 以下为译文: 通过与大数据工具整合,R提供了大数据集的深度统计能力,包括统计分析以及数据驱动的可视化等。而在金融、药物、媒体及销售这些可直接从数据中获取决策的行业中,R更得到了深度应用。 根据Rexer Analytics 2013年对数据挖掘专业人员的调查显示,R已经成为当下最流行的统计分析工具,至少有70%被
如果有人问我,系统的学习农业数据分析,我推荐R语言,因为有很多免费的农业相关类的包,比如agricolae,agridat,lme4,sommer等等,SPSS还是算了吧,它做方差分析不能分析裂区试验,没有混线性模型,更不能分析育种值和配合力。
R语言的确提供了很全面的统计分析的软件包,比如CRAN,Bioconductor,Neuroconductor,以及ROpenSci;并且提供了优秀的包管理功能。
方差分析是统计分析应用中最广的方法了,可是怎么用R语言进行统计分析呢?当然, 农业试验中, 一般都是随机区组, 多因素随机区组, 裂区试验, 一年多点, 多年多点, 这里我们用最简单的示例讲解一下如何使用R语言进行分析. 其它试验设计的分析方法放在以后的微信文中进行讲解.
利用混合线性模型在农业,食品科学,生物学,医学和技术科学中的应用,获得有关数据统计分析的知识和能力。
类似PCA的做法: 每组 变量 中 选择 若干代表性 综合指标(变量的线性组合),通过 研究 两组 综合指标 间关系 来反映 两组变量间 相关关系 即 线性组合 之间的相关关系 步骤:
首先,在这里先跟大家说声对不起,技术团队最近一直在做课程开发,本着宁缺毋滥的原则,我们的微信文章一再搁置,在编辑部催了无数遍之后,终于可以把课程放出来给大家了。
如果看不到此选项,则可能需要先安装Excel的分析工具包。这是通过选择 Office按钮> Excel选项> Excel 中的加载项或 从Excel 开始的Excel版本中的文件>帮助|选项>加载项 ,然后单击 窗口底部的“ 转到”按钮来完成的。接下来, 在出现的对话框中选择“ 分析工具库”选项,然后单击“ 确定” 按钮。然后,您将能够访问数据分析工具。
R作为开源的数据统计分析语言正潜移默化的在企业中扩大自己的影响力。特有的扩展插件可提供免费扩展,并且允许R语言引擎运行在Hadoop集群之上。 R语言是主要用于统计分析、绘图的语言和操作环境。R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发。(也因此称为R)现在由“R开发核心团队”负责开发。R是基于S语言的一个GNU项目,所以也可以当作S语言的一种实现,通常用 S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 R的源代码可自由
今天给大家介绍一款在开源世界里集万千宠爱于一身的软件——R语言。 有多受宠呢?简单说,你能想到的地方都有它的身影。 做学术?看看R在各大语言排名系统的表现 O' reilly media在过去几年中
主成分分析(Principal Component Analysis,PCA),是考察多个变量间相关性的一种多元统计方法,基本思想[1]就是在保留原始变量尽可能多的信息的前提下达到降维的目的,从而简化问题的复杂性并抓住问题的主要矛盾。最后筛选出的几个替代原始数据的变量被称为主成分,它们是原始变量的线性组合,关系图如下:
多元统计分析及R语言建模 一些基础知识选择题 测验 第1章 单元测验 第2章 单元测验 第3章 单元测验 第4章 单元测验 第5章 单元测验 第6章 单元测验 第7章 单元测验 本文作者: yiyun 本文链接: https://moeci.com/posts/分类-数据分析/分类-杂记/multivariate-statistical-analysis-simple/ 版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
好吧,我承认,最近都没好好学习了,事情比较多,好几天晚上我都会写下标题,然后就没有然后了,今天再不能忍了,决定来一发。但是,我觉得还是推文的质量要比数量更加重要,不然一个是浪费自己的时间,也是浪费大家的时间。所以虽然很忙,但是我还是会尽力做到解释的完美一点~.~。 今天要给大家讲讲R语言,主要是入门基础及简单的统计分析入门。 R语言其实算是我正式接触编程语言的第一门语言,大学学的C++,matlab简直是水到家了。所以刚开始学R语言的时候,我很痛苦,你知道吗。大约经历了1个月的磨合期,逐渐对R有了点认识,知
主成分分析(Principle Component Analysis,PCA)是将多个指标化为少数几个综合指标的一种统计分析方法,是一种降维的方式 将多个变量转化为几个少数主成分的方法。
本文由经管之家CDA数据分析师独家整理,转载请注明来源 前不久,经管之家邀请到了吉林大学数据学院概率统计系教授朱复康博士参与了论坛的线上互动问答,与广大坛友就时间序列分析、保险精算等内容进行了交流,小编将问答内容整理如下,以飨读者。 本期嘉宾 朱复康博士,吉林大学数学学院概率统计系教授,研究方向为时间序列分析、保险精算,主要教授时间序列分析、多元统计分析与线性模型、统计软件、概率统计、数理统计、多元统计分析、统计基础等研究生和本科课程,新加坡南洋理工大学访问学者, 美国佐治亚理工学院博士后,现兼任吉林省工业
1、来源 有哪些你看了以后大呼过瘾的数据分析书? https://www.zhihu.com/question/60241622 做数据分析不得不看的书有哪些? https://www.zhihu.com/question/19640095 2、采集回答 3、清洗:去除空行、去重 4、统计分析 5、两个帖子中都有回答的作者,考虑大V、书商、利益相关者 作者 计数 大数据峰哥 3 Bottle 2 DataCastle数据城堡 2 DataHunter 2 George Li 2 GrowingIO 2
各位科研芝士的小伙伴,本站本着给大家提供科研便利的宗旨,继续给大家提供干货, 一般的临床研究,统计分析就“三把斧”:统计描述、差异性比较和回归建模。R语言完美解决了统计分析“三把斧”结果整理成规范三线表的麻烦。在统计描述上,R可以根据不同数据的特征给出不同的统计描述方法,在差异性比较方面,R可以给出不同数据比较的不同差异性比较方法,包括t、F、卡方、fisher法和秩和检验;在回归分析上,不仅是Cox回归,线性回归、logistic回归,R同样可以形成规范的表格。这些表格,如果人工来整理,不仅慢,而且不规范!今天我们就攻下这个高地,学习一下如何整理成三线表。
R语言的“MASS“包是一个十分强大的统计包,可以进行各种统计分析,我也将围绕它来介绍判别分析。”MASS“包既可以进行线性判别,也可以进行二次判别。除非指定先验概率,否则”MASS”的判别分析会按照样本量来等比例给出先验概率。
本文字数为10000字,阅读全文约需25分钟 本文为回归分析学习笔记。 前言 1.“回归”一词的由来 我们不必在“回归”一词上费太多脑筋。英国著名统计学家弗朗西斯·高尔顿(Francis Galton,1822—1911)是最先应用统计方法研究两个变量之间关系问题的人。“回归”一词就是由他引入的。他对父母身高与儿女身高之间的关系很感兴趣,并致力于此方面的研究。高尔顿发现,虽然有一个趋势:父母高,儿女也高;父母矮,儿女也矮,但从平均意义上说,给定父母的身高,儿女的身高却趋同于或者说回归于总人口的平均身
R语言是用于统计分析,图形表示和报告的编程语言和软件环境。 R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发。
很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:199427210,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系
前几天在知乎上,回答了问题:「如何深入学习数据分析?」,没想到竟然成了优秀回答。感谢知友们的喜欢。
掌握一种强大的数据分析工具,它可以帮助你更好地理解和处理数据。R语言是一种开源的编程语言,它提供了许多用于数据分析和可视化的函数和包。使用R语言,你可以轻松地进行数据清洗、统计分析、可视化等操作。此外,R语言还有一个庞大的社区,你可以从中获取到许多有用的资源和支持。总之,学习R语言可以帮助你更好地处理和分析数据,提高工作效率和准确性。
个人认为,R语言有两个强项,统计和绘图。在生物信息数据分析中,R语言更多时候是发挥一个科学计算和可视化的作用。当然,R语言的功能远不止于此,不仅可以作为脚本语言,解决统计分析和可视化的”小”问题,也可以编写一套完整pipeline, 解决整套数据分析的”大”问题。
最近开始学习R语言,把学习笔记和小伙伴们分享一下吧,欢迎一起交流 R 起源: R是S语言的一种实现。S语言是由 AT&T贝尔实验室开发的一种用来进行数据探索、统计分析、作图的解释型语言。最初S语言的实
领取专属 10元无门槛券
手把手带您无忧上云