论文地址:https://arxiv.org/pdf/1902.07995.pdf
在学习SLAM的过程中,我们会遇到各种BA问题,关于优化问题,有局部优化、全局优化、非线性优化、图优化、位姿图优化、BA优化等,那这些东西到底是什么意思? BA BA全称Bundle Adjustme
深度学习在其他CV领域可以说已经完全碾压了传统图像算法,例如语义分割、目标检测、实例分割、全景分割。但是在VSLAM领域,似乎还是ORB-SLAM3、VINS-Fusion、DSO、SVO这些传统SLAM算法占据领导地位。那么这背后的原因是什么?基于深度学习的VO目前已经发展到了什么程度?
刚体,顾名思义,是指本身不会在运动过程中产生形变的物体,如相机的运动就是刚体运动,运动过程中同一个向量的长度和夹角都不会发生变化。刚体变换也称为欧式变换。
版权声明:本文为博主原创文章,未经博主允许不得转载。违者必究。 https://blog.csdn.net/electech6/article/details/86585330
很多刚刚接触SLAM的小伙伴在看到李群和李代数这部分的时候,都有点蒙蒙哒,感觉突然到了另外一个世界,很多都不自觉的跳过了,但是这里必须强调一点,这部分在后续SLAM的学习中其实是非常重要的基础,不信你看看大神们的论文就知道啦。
师兄:按照惯例,我还是先说说图优化的背景吧。SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。不过,目前SLAM研究的主流热点几乎都是基于图优化的。
小白:师兄师兄,最近我在看SLAM的优化算法,有种方法叫“图优化”,以前学习算法的时候还有一个优化方法叫“凸优化”,这两个不是一个东西吧?
一派是基于马尔科夫性假设的滤波器方法,认为当前时刻的状态只与上一时刻的状态有关。另一派是非线性优化方法,认为当前时刻状态应该结合之前所有时刻的状态一起考虑。
原文链接:VSLAM系列原创09讲 | 如何在线生成BoW词袋向量?原理+代码详解
激光 SLAM 在 SLAM 技术中是较为传统且成熟的。2D 激光 SLAM 技术需要输入 IMU 数据、 里程计数据和 2D 激光雷达数据,经过计算后输出覆盖栅格地图和机器人轨迹。从 20 世纪 90 年 代 EKF-SLAM 的提出开始,陆续出现了 UKF-SLAM、PF-SLAM、FAST-SLAM、GMapping、 Optimal-RBPF等激光 SLAM 算法。其中,GMapping 算法基于 RBPF-SLAM,使用粒子滤波器 (Particle Filter,PF),进一步降低了定位和建图误差,从而成为一种常用的激光 SLAM 算法。
上一届国际计算机视觉大会ICCV,成为了深度学习技术的主场,但在我们宣布卷积神经网络的全面胜利之前,让我们先看看计算机视觉的,非学习几何方面的进展如何。同步定位与地图构建可以说是机器人学领域最重要的算法之一,在计算机视觉和机器人研究社区完成了一些开创性的工作。本文将总结来自 ICCV 实时 SLAM 的未来研讨会的要点。
👆点击“博文视点Broadview”,获取更多书讯 计算机视觉是人工智能发展最快的三大领域之一。 自OpenAI的ChatGPT模型发布以来,该模型可以与计算机视觉模型配合,完成图像分类、标注和描述任务。 二者结合在一起,可以提供更全面的人工智能解决方案。 而作为基于几何方法的计算机视觉核心技术,视觉SLAM广泛应用于元宇宙、自主移动机器人、自动驾驶车辆、增强现实、智能穿戴设备和智能无人机等领域。 近几年,业界诞生了大量优秀的视觉SLAM算法框架,其中以西班牙的萨拉戈萨大学机器人感知与实时研究
从研究生接触SLAM算法到现在也有两三年了,期间学习了很多经典的SLAM算法框架并写了一些相关的博客,本篇博客主要目的是想将这些博客进行一个简单总结用于查漏补缺。首先,按照我的理解,我梳理了如下一个思维导图,如果读者发现有什么需要补充或者纠正的欢迎随时交流:
作者:高翔 张涛 刘毅 颜沁睿 编者按: 本文节选自图书《视觉SLAM十四讲:从理论到实践》,该书系统介绍了视觉SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,又包括计算机视觉的算法实现。此外,还提供了大量的实例代码供读者学习研究,从而更深入地掌握这些内容。 当前的开源方案 本文将带着读者去看看现有的SLAM方案能做到怎样的程度。特别地,我们重点关注那些提供开源实现的方案。在SLAM研究领域,能见到开源方案是很不容易的。往往论文中介绍理论只占20%的内容,其他80%都写在代码中
SLAM,即:同步定位与地图创建(Simultaneous Localization and Mapping,SLAM)。它试图解决这样的问题:一个机器人在未知环境中运动,如何通过环境的观测确定自身的运动轨迹,同时构建出环境的地图。SLAM根据硬件设备的不同主要有两种:基于激光雷达的SLAM和基于视觉的SLAM(VSLAM)。
提起来SLAM,我们就会想到无人驾驶,但是SALM的应用不仅是无人驾驶,其中还有AR(增强现实)。很多内容都是提到SLAM在AR中很重要,但是为什么要用SLAM,SLAM在AR中又到底扮演者什么样的角色?
基于图优化方法的激光SLAM有cartographer,基于滤波器的方法有GMapping。
本文节选自图书《视觉SLAM十四讲:从理论到实践》,该书系统介绍了视觉SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,又包括计算机视觉的算法实现。 此外,还提供了大量的实例代码供读者学习研究,从而更深入地掌握这些内容。本文转自人工智能头条。 作者 | 高翔 张涛 刘毅 颜沁睿 当前的开源方案 本文将主要介绍现有的SLAM方案,到底能做到怎样的程度,尤其会关注提供开源实现的方案。 在SLAM研究领域,能见到开源方案是很不容易的。往往论文中介绍理论只占20%的内容,其他80
文章:LiDAR-based SLAM for robotic mapping: state of the art and new frontiers
👆点击“博文视点Broadview”,获取更多书讯 人工智能技术按照信息来源主要分为计算机视觉(视觉)、自然语言处理(文本)、语音识别(语音)三大方向。 其中,计算机视觉是需求最大、发展最快、应用最广泛的领域。 计算机视觉算法通常分为基于学习的方法和基于几何的方法。 前者主要指利用深度学习来实现图像识别、物体检测、物体分割、视频理解、图像生成等;后者主要指利用多视图立体几何来实现空间定位、三维重建、测距测绘等。 其中,基于几何方法的计算机视觉核心技术之一是同步定位与建图(Simultaneous Lo
Persistent Map Saving for Visual Localization for Autonomous Vehicles : An ORB-SLAM 2 Extension
内容提要:来自蒙特利尔、卡内基梅隆大学的团队,在 ICRA 2020 上发表的论文中所提出的 ∇SLAM,解决了当下 SLAM 系统普遍所面临的一个开放性问题。
自主导航是机器人基础性和关键性技术,是机器人实现其他更高级任务的前提。视觉 SLAM (Simultaneous Localization And Mapping) 利用视觉传感器获取环境图像信息,基于多视图几何算法构建环境地图。视觉SLAM技术广泛应用于无人驾驶、元宇宙、游戏、智能机器人等领域。在无人驾驶方面,一些大厂如腾讯、阿里、百度、华为、小米、商汤等企业投入重金研发,开放大量关于视觉SLAM职位。同时,国内许多独角兽无人驾驶公司如Momenta、AutoX、小马智能和图森未来等举重金招募视觉SLAM人才。随着元宇宙的火爆,国内互联网巨头尤其字节跳动,纷纷将大量资金投入元宇宙,致使视觉SLAM人才进一步稀缺,引发视觉SLAM更高的薪酬与福利。
同时定位与地图重建(Simultaneous Localization and Mapping, SLAM),是机器人领域中的一项基础的底层技术,其希望机器人能在一个陌生的环境下实现自身的实时定位,同时能够重建出有关于环境的地图。随着近年无人驾驶、增强现实、虚拟现实等应用的兴起,作为实现这些应用的SLAM技术也越发引人注目。SLAM技术主要完成两项任务:自身定位与环境建图,也是让机器知道自己在哪里,已经周围的环境是啥。然而,如果想要精确的实现定位任务就不可避免的需要高精度的地图,而高精度的地图重建是需要以更为精确的自身定位作为基础的。 近年以来,除了传统的激光SLAM解决方案,基于视觉,基于惯性传感器等等的解决方案也在不断变多,整个SLAM领域整体呈现百花齐放的态势。 一. 目前在SLAM领域中的关键问题: 1、数据关联:SLAM技术在未来的发展过程中必然会有一个方向是将SLAM系统中集成多传感器,进行多传感器的融合任务。但是显而易见的是不同的传感器之间具有不同的特征,目前的很多SLAM研究人员都转向了研究多传感器SLAM中的传感器校准(例如自校准或者快速标定等内容),状态估计和后端BA优化。 2、 多机SLAM联合建图:目前在小范围内已有的若干SLAM系统大多都能获得比较好的效果,但是面对大规模,长时间的SLAM问题,如果只采用单机SLAM系统则获得良好的效果,此时通过分散的多机SLAM系统来解决大场景,长时间的SLAM任务将会是一个比较合适的选择,属于比较前沿的SLAM研究方向。 3、 高清晰度、信息量丰富的地图:SLAM技术作为机器人领域的一项底层基础技术,需要根据上层应用程序需要提供一张具有丰富信息的地图,其中比较具有代表性的地图形式就是拓扑地图,语义地图,以及点云地图等等;同时当SLAM系统的面对大场景,长时间的情况时,采用何种方式来存储更新地图也将是一个迫切需要解决的问题。 3、目前SLAM技术仍然面对着更强适应性、鲁棒性、可扩展性的要求。 4、适合的SLAM应用:目前SLAM技术具有广泛的应用场景,但是许多SLAM系统依然处在实验室研究阶段,缺乏合适的工程工具进行封装,需要我们继续完善SLAM的应用生态。 二. SLAM领域中的经典数据集: 1.KITTI数据集(单目视觉 ,双目视觉, velodyne, POS 轨迹)
学 SLAM 的同学,应该没有不知道 ORB-SLAM的,截止2020年7月24日,ORB-SLAM系列的谷歌引用量已达到4770 = 3053+1717!实属相当恐怖的数据
室内定位技术是现代智能系统的关键组成部分,它在零售、物流、安全监控以及增强现实等领域发挥着重要作用。视觉SLAM(Simultaneous Localization and Mapping,即同步定位与建图)技术作为一种新兴的室内定位方法,因其高精度和环境适应性强而备受关注。本文将探讨视觉SLAM技术的原理、应用案例以及在室内定位中的突破性进展。
ICRA官方分享:https://www.bilibili.com/video/BV1q3411G7iF
标题:Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
机器之心专栏 作者:思岚科技 SLAM(同步定位与地图构建),是指运动物体根据传感器的信息,一边计算自身位置,一边构建环境地图的过程,解决机器人等在未知环境下运动时的定位与地图构建问题。目前,SLAM 的主要应用于机器人、无人机、无人驾驶、AR、VR 等领域。其用途包括传感器自身的定位,以及后续的路径规划、运动性能、场景理解。 由于传感器种类和安装方式的不同,SLAM 的实现方式和难度会有一定的差异。按传感器来分,SLAM 主要分为激光 SLAM 和 VSLAM 两大类。其中,激光 SLAM 比 VS
摘要:移动机器人导航功能的实现需要同时定位与建图(SLAM)和路径规划这两方面的技术,其中由SLAM技术生成的栅格地图是移动机器人运用路径规划算法的前提。
文章:Orbeez-SLAM: A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
文章:DSP-SLAM: Object Oriented SLAM with Deep Shape Priors
本文介绍了一种具有较高可用性和可扩展性的可视化SLAM框架——OpenVSLAM。视觉SLAM系统对于AR设备、机器人和无人机的自主控制等是必不可少的。然而,传统的开源视觉SLAM框架并没有像从第三方程序调用的库那样进行适当的设计。为了克服这种情况,我们开发了一个新的视觉SLAM框架。该软件设计简单,易于使用和扩展。它包含了一些有用的特性和功能,用于研究和开发。OpenVSLAM发布于https://github.com/xdspacelab/OpenVSLAM
标题:Real-Time Multi-SLAM System for Agent Localization and 3D Mapping in Dynamic Scenarios
2018年7月底,深蓝学院发起并承办了“第一届全国SLAM技术论坛”。浙江大学章国锋老师、香港科技大学沈劭劼老师、上海交通大学邹丹平老师、中科院自动化所申抒含老师在“圆桌论坛:SLAM技术发展趋势”上分享了SLAM技术的趋势,现将内容整理公布,希望更多SLAMer受益。
1、Gmapping 简介: 基于粒子滤波框架的激光SLAM,结合里程计和激光信息,每个粒子都携带一个地图,构建小场景地图所需的计算量较小,精度较高。可以结合《概率机器人》一起学习。 Github链接: https://github.com/ros-perception/openslam_gmapping https://github.com/ros-perception/slam_gmapping 相关论文: Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard: Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, IEEE Transactions on Robotics, Volume 23, pages 34-46, 2007.
RGB-D相机作为一种特殊形式的相机,主要通过主动发射红外结构光或计算飞行时间(TOF)来直接获得图像深度。它使用方便,但对光线敏感,大多数情况下只能在室内使用。
论文名称: A survey of image semantics-based visual simultaneous localization and mapping Application-oriented solutions to autonomous navigation of mobile robots 作者: Linlin Xia, Jiashuo Cui, Ran Shen, Xun Xu, Yiping Gao and Xinying Li
早在 2005 年的时候,激光 SLAM 就已经被研究的比较透彻,框架也已初步确定。激光 SLAM,是目前最稳定、最主流的定位导航方法。
本文是一篇关于鱼眼相机的SLAM的介绍以及开源demo体验的介绍,希望有兴趣的小伙伴能够自行体验,并积极分享相关内容。欢迎交流和讨论,联系邮箱:dianyunpcl@163.com
之前做的深度学习闭环检测 这方面,最近想了解下语义这方面,于是总结了一些开源的语义SLAM代码共后面研究:
SLAM是Simultaneous localization and mapping缩写,意为“同步定位与建图”,主要用于解决机器人在未知环境运动时的定位与地图构建问题,为了让大家更多的了解SLAM,以下将从SLAM的应用领域、SLAM框架、SLAM分类(基于传感器的SLAM分类)来进行全面阐述,本文仅对没有接触过SLAM的新人进行的科普。
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM
首先,我们需要知道什么是SLAM(simultaneous localization and mapping, 详见SlamCN),SLAM,即时定位与制图,包含3个关键词:实时、定位、制图,就是实时完成定位和制图的任务,这就是SLAM要解决的基本任务。按照使用的传感器分为激光SLAM(LOAM、V-LOAM、cartographer)与视觉SLAM,其中视觉SLAM又可分为单目SLAM(MonoSLAM、PTAM、DTAM、LSD-SLAM、ORB-SLAM(单目为主)、SVO)、双目SLAM(LIBVISO2、S-PTAM等)、RGBD SLAM(KinectFusion、ElasticFusion、Kintinous、RGBD SLAM2、RTAB SLAM);视觉SLAM由前端(视觉里程计)、后端(位姿优化)、闭环检测、制图4个部分组成,按照前端方法分为特征点法(稀疏法)、光流法、稀疏直接法、半稠密法、稠密法(详见高翔《视觉slam十四讲》第xx章);按照后端方法分为基于滤波(详见SLAM中的EKF,UKF,PF原理简介)与基于图优化(详见深入理解图优化与g2o:图优化篇与深入理解图优化与g2o:g2o篇)的方法。
本文讲解了视觉里程计(Visual Odometry)和SLAM(Simultaneous Localization and Mapping)的基本概念、发展历程、主要算法及其在实际应用中的优势和挑战。作者通过对这些概念和算法的介绍,使读者对视觉里程计和SLAM有了更加深入的了解。同时,文章还介绍了目前该领域的一些研究热点和未来发展方向,对于想要深入了解视觉里程计和SLAM的读者具有重要的参考价值。
ORB-SLAM3是一种基于视觉传感器的实时单目、双目和RGB-D SLAM系统。
任何把相机连接到计算机的工作都不能忽视三维视觉。近年来,视觉 SLAM 技术发展势头迅猛,AR/VR、无人机、机器人、自动驾驶方面的公司都在大量招聘了解这方面技术的人,但熟悉该领域的人才却非常稀缺。
领取专属 10元无门槛券
手把手带您无忧上云