首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    独家 | 教你实现数据集多维可视化(附代码)

    翻译:张媛 校对:卢苗苗 用代码将你的数据集进行多维可视化! 介绍 描述性分析是与数据科学或特定研究相关的任何分析生命周期中的核心组成部分之一。数据聚合,汇总与可视化是支撑数据分析这一领域的主要支柱。从传统商业智能时代开始,即使在如今的人工智能时代,数据可视化一直是一种强大的工具,由于其能够有效地抽象出正确的信息,清晰直观地理解和解释数据结果而被很多组织广泛地采用。然而处理通常具有两个以上属性的数据集时开始出现问题,因为数据分析和通信的媒介一般局限于两个维度。在本文中,我们将探讨多维数据可视化过程中的一些

    011

    还在对Matplotlib繁琐的图层设置感到烦恼!?快来看看这个Python绘图工具包吧

    是不是被matplotlib繁琐绘图属性设置搞得一脸懵?是不是因常常记不住某一个图层设置函数而被迫看又长又枯燥的API文档?又或者是不是在面对多个matplotlib子图时写了大量的循环代码来设置属性?最后还是不是希望只精通一个Python绘图包就可以把二维、空间等类型图表绘制方法都掌握??此外,还有好多无奈和吐槽,我不知道你们是不是这样?反正以上列出的几点就是我在使用matplotlib自定义绘制图表时最大的感触了,当然,本期推文不是来吐槽的,是来为大家提供好的解决方法的。下面就介绍下今天的主角-- ProPlot。说真的!当我刚开始发现这个包时:“嗯?不错,logo和matplotlib很像”,可是,当我在熟悉大多数和经常使用matplotlib绘图时,回来再看这个工具包时:“我ri,真香!!我之前干了啥?赶快用起来!”。总之一句话,如果上期推文 因为配图,SCI多次返修!?因为你还没发现这个Python科学绘图宝藏工具包 可以让你一步设置sci发表级别的配图格式的话,那本期推文将告诉你如何使用更少的代码实现繁琐的自定义绘图需求,当然,也是符合出版需求的配图,主要内容如下:

    01

    主成分分析(PCA):通过图像可视化深入理解

    主成分分析(PCA)是一种广泛应用于机器学习的降维技术。PCA 通过对大量变量进行某种变换,将这些变量中的信息压缩为较少的变量。变换的应用方式是将线性相关变量变换为不相关变量。相关性告诉我们存在信息冗余,如果可以减少这种冗余,则可以压缩信息。例如,如果变量集中有两个高度相关的变量,那么通过保留这两个变量我们不会获得任何额外信息,因为一个变量几乎可以表示为另一个的线性组合。在这种情况下,PCA 通过平移和旋转原始轴并将数据投影到新轴上,将第二个变量的方差转移到第一个变量上,使用特征值和特征向量确定投影方向。因此,前几个变换后的特征(称为主成分)信息丰富,而最后一个特征主要包含噪声,其中的信息可以忽略不计。这种可转移性使我们能够保留前几个主成分,从而显著减少变量数量,同时将信息损失降至最低。

    01
    领券