对对象进行分类就是将其分配给特定的类别。这本质上是一个分类问题是什么,即将输入数据从一组这样的类别,也称为类分配到预定义的类别。
识别我们周围环境中的声音是我们人类每天很轻松就能做到的事情,但是对于计算机相当困难。如果计算机可以准确识别声音,它将会在机器人,安全和许多其他领域得到广泛应用。 最近有许多与计算机视觉有关的发展,通过深入学习和建立大型数据集如 ImageNet 来训练深入学习模型。 然而,听觉感知领域还没有完全赶上计算机视觉。谷歌三月份发布了AudioSet,这是一种大型的带注释的声音数据集。希望我们能看到声音分类和类似领域的主要改进。 在这篇文章中,我们将会研究如何利用图像分类方面的最新进展来改善声音分类。 在城
本章我们来介绍如何使用Tensorflow训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。话不多说,来干。
本章我们来介绍如何使用PaddlePaddle训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。
语音降噪是一个长期存在的问题。给定有噪声的输入信号,目的是在不降低目标信号质量的情况下滤除此类噪声。可以想象有人在视频会议中讲话,而背景音乐正在播放。在这种情况下,语音去噪系统的任务是消除背景噪声,以改善语音信号。除许多其他用例外,此应用程序对于视频和音频会议尤其重要,在视频和音频会议中,噪声会大大降低语音清晰度。
本章我们来介绍如何使用Pytorch训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。
美国持续封锁,华为的技术自研,已经深入到了AI底层算法层面上,并开始将研究成果面向业界开源。
声音分类是音频深度学习中应用最广泛的方法之一。它包括学习对声音进行分类并预测声音的类别。这类问题可以应用到许多实际场景中,例如,对音乐片段进行分类以识别音乐类型,或通过一组扬声器对短话语进行分类以根据声音识别说话人。
【1】 Default Distances Based on the KMV-CEV Model 标题:基于KMV-CEV模型的默认距离
【1】 Robust Decisions for Heterogeneous Agents via Certainty Equivalents 标题:基于确定性等价的异构Agent鲁棒决策
对于人类的语音识别,目前有很多不同的项目和服务,像Pocketsphinx,谷歌的语音API,以及其他等等。这样的应用程序和服务能够以一种很不错的质量识别语音然后转换成文本,但没有一个能够对麦克风所捕
【1】 Neural Fixed-Point Acceleration for Convex Optimization 标题:凸优化的神经不动点加速算法
对于 Batch Normalization 的知识最原始的出处来源于《Batch Normalization:Accelerating Deep Network Trainning by Reducing Internal Covariate Shift》这篇论文。
【1】 Video Swin Transformer 标题:视频双Transformer
今天介绍一篇浙江大学智能创新药物研究院侯廷军教授团队、中南大学曹东升教授团队和腾讯量子计算实验室联合在Briefings in Bioinformatics发表的一篇论文“Knowledge-based BERT: a method to extract molecular features like computational chemists”。本文提出了一种新的预训练策略,通过学习由计算化学家预定义的分子特征和原子特征,使得模型能够像计算化学家一样从SMILES中提取分子特征。K-BERT在多个成药性数据集上表现了优异的预测能力。此外,由K-BERT 生成的通用指纹 K-BERT-FP 在 15个药物数据集上表现出与 MACCS 相当的预测能力。并且通过进一步预训练,K-BERT-FP还可以学习到传统二进制指纹(如MACCS和ECFP4)无法表征的分子大小和手性信息。
随着神经网络的尺寸和训练数据的持续增长,人们对分布式计算的需求也逐渐增大。在深度学习中实现分布式并行的常用方式是使用数据并行方法,其中数据被分配进不同进程中,而模型在这些进程中重复。当每个模型的 mini-batch 大小保持不变,以增加计算/通信比时,整个系统上的 mini-batch 大小会随着进程数量成比例增长。
这里得到的I_pos的维度是**(N,1,1), N个数代表N**张图片的自己与自己的增强图的特征的匹配度。
bagging(bootstrap aggregating的缩写,也称作“套袋法”)就是其中的一种
之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择。
目录[-] 前言 分类(Classification)是数据挖掘领域中的一种重要技术,它从一组已分类的训练样本中发现分类模型,将这个分类模型应用到待分类的样本进行预测。 当前主流的分类算法有:朴素贝叶斯分类(Naive Bayes)、支持向量机(SVM)、KNN(K-Nearest Neighbors)、神经网络(NNet)、决策树(Decision Tree)等等。 KNN算法是一个理论上比较成熟的方法,最初由Cover和Hart于1968年提出,思路非常简单直观,易于快速实现。 基本思想 如下图所示
这篇文章是何恺明组做的一个偏实验的工作,主要是探究ImageNet预训练的模型,在迁移到其他任务比如目标检测,分割等会不会比从头训练模型的要更好。可以总结一下就是
BART和MASS都是2019年发布的,面向生成任务,基于Transformer神经翻译结构的序列到序列模型。分别由Facebook 和微软亚洲研究院提出。他们都对encoder输入的屏蔽(mask)方式进行了改进,并且在生成任务的效果也都比之前有了不少提升。让我们花10分钟来一起来看看这两个模型吧。 两个模型都是以Transformer的神经翻译模型作为基础结构,而Transformer的encoder-decoder结构(图 1)的具体讲解可以参考上一篇文章。
这些开源项目都是在语言模型领域中具有竞争力的选择。它们具备相似的关键特性和核心优势,如高质量、多功能、支持多种场景等。这些项目还通过引入新特性和改进来提升性能,例如更长的上下文长度和更高效的推理速度。无论是处理对话、分类问题还是进行代码生成,这些开源项目都展现出了非常强大且灵活可扩展的能力。无论您是开发者还是研究人员,这些项目都值得一试。
真味是淡至如常。 KNN图像分类 链接 摘自大佬的笔记,拿来细细品味,别是一番滋味。 import numpy as np import os import pickle import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage def distance(X_test, X_train): """ 输入: X_test -- 由nu
【新智元导读】此前,伯克利、TACC和UC戴维斯的研究人员使用新算法,在24分钟内训练完AlexNet,1小时训练完ResNet,创下了纪录。现在,他们继续推进,使用1024个CPU,在11分钟内训练
一、概要: 批训练(mini-batch)的训练方法几乎每一个深度学习的任务都在用,但是关于批训练的一些问题却仍然保留,本文通过对MNIST数据集的演示,详细讨论了batch_size对训练的影响,结
Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。
前不久,CMU和谷歌大脑提出的XLNet预训练模型在 20 项任务上全面碾压曾有“最强NLP预训练模型”之称的BERT,可谓风光无限,吸足了眼球。
本文没有任何的原理和解读,只有一些实验的结论,对于想使用混合精度训练的同学可以直接参考结论白嫖,或者直接拿github上的代码(文末放送)。
原文:https://www.cnblogs.com/earendil/p/8872001.html
机器学习技术在应用之前使用“训练+检验”的模式(通常被称作”交叉验证“)。 预测模型为何无法保持稳定? 让我们通过以下几幅图来理解这个问题: 此处我们试图找到尺寸(size)和价格(price)的关系
Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。 首先介绍Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本)。 1. Bagging (bootstrap aggregating) Bagging即套袋法,其算法过程如下: 从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中
深度神经网络(DNNs)在各种任务上取得了显著的进展,在工业应用中取得了显著的成功。在这些应用中,模型优化的追求突出地表现为一个普遍的需求,它提供了提高模型推理速度的潜力,同时最小化精度折衷。这一追求包括各种技术,尤其是模型削减、量化以及高效模型设计。高效模型设计包括神经架构搜索(NAS)和手工设计方法。模型削减已成为工业应用中优化模型的主要策略。作为主要加速方法,模型削减关注于有意去除冗余权重,同时保持准确性。
合理的Train/Test集划分会有效地减少under-fitting和over-fitting现象
推荐系统最重要的就是解决高维稀疏的user-item矩阵推荐问题,基于百万用户感兴趣的item给一个用户推荐他最感兴趣的item是相当有挑战的事.这篇论文<GLocal-K: Global and Local Kernels for Recommender Systems>就提出了一个新的框架Global Local Kernel-based matrix completion(GLocal-K)去解决高维系数的user-item矩阵补全问题.
Detectron 提供了基于 COCO Dataset 的推断和训练使用说明 - Using Detectron.
作者通过预先训练一个70亿参数的Aim模型在20亿图像上的结果来解释这些发现,该模型在ImageNet-1k上的性能达到84.0%,且Backbone网络保持冻结。 有趣的是,即使在这个规模上,作者并未观察到性能出现饱和的迹象,这表明Aim可能代表了一种新的大型视觉模型训练的前沿。Aim的预训练类似于LLMs的预训练,不需要任何针对图像的特定策略来在规模上稳定训练。
本文提出了一种用于图像识别的深度学习网络模型,该模型采用了一种改进的卷积神经网络结构,并使用了批量归一化、激活函数和优化算法等技术。实验结果表明,该模型在图像分类任务上具有较好的性能表现,同时具有较好的扩展性和鲁棒性。
自Google提出Vision Transformer(ViT)以来,ViT渐渐成为许多视觉任务的默认backbone。凭借着ViT结构,许多视觉任务的SoTA都得到了进一步提升,包括图像分类、分割、检测、识别等。
对抗训练(adversarial training)是增强神经网络鲁棒性的重要方式。在对抗训练的过程中,样本会被混合一些微小的扰动(改变很小,但是很可能造成误分类),然后使神经网络适应这种改变,从而对对抗样本具有鲁棒性。
原文作者: Sunil Ray 翻译:王鹏宇 我一直对数据界的编程马拉松(Hackathons)保持关注。通过对比排名榜初期和最终的结果, 我发现了一个有趣的现象:在初期排名较高的参赛者,在最终的验证环节往往地位不保,有些甚至跌出前 20 名。 猜猜是什么对引起了排名的剧烈变化?换句话说,为什么这些参赛者的模型在最终验证环节无法保证稳定性?让我们来探讨一下可能的原因。 预测模型为何无法保持稳定? 让我们通过以下几幅图来理解这个问题: 此处我们试图找到尺寸(size)和价格(price)的关系。三个模型各自做
在之前的文章中,我们介绍了 GAN 的原理以及如何评价训练好的模型。可能有小伙伴看到,怎么生成的都是单一类别的图片呢,像 CIFAR10 和 ImageNet,都包含了多种类别的图片,如果我想训练一个能够生成多种类别图片的生成对抗网络该怎么做呢?
ChatGPT的核心技术基于Transformer架构,尤其是其解码器部分。为了更深入地理解其技术实现,我们需要详细了解以下几个关键组件和步骤:
选自arXiv 机器之心编译 参与:蒋思源、李亚洲、路雪 自 Facebook 发布 1 小时训练 ImageNet 论文以来,很多研究者都在关注如何使用并行训练来提高深度学习的训练速度。Facebook 提出了一种提高批量大小的分布式同步 SGD 训练方法,而 Yang You 等人在 Facebook 的论文上更进一步采用层级对应的适应率缩放(LARS)来对每一层网络使用不同的学习率。他们在 AlexNet 和 ResNet-50 模型上分别实现了 8129 和 32768 的批量大小,而且在加速训练的
本篇文章主要记录对之前用神经网络做文本识别的初步优化,进一步将准确率由原来的65%提高到80%,这里优化的几个方面包括: ● 随机打乱训练数据 ● 增加隐层,和验证集 ● 正则化 ● 对原数据进行PCA预处理 ● 调节训练参数(迭代次数,batch大小等) 随机化训练数据 观察训练数据集,发现训练集是按类别存储,读进内存后在仍然是按类别顺序存放。这样顺序取一部分作为验证集,很大程度上会减少一个类别的训练样本数,对该类别的预测准确率会有所下降。所以首先考虑打乱训练数据。 在已经向量化的训练数据的基础上打乱
class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)。该参数在处理非平衡的训练数据(某些类的训练样本数很少)时,可以使得损失函数对样本数不足的数据更加关注。
神经网络训练过程是对所有m个样本,称为batch,如果m很大,例如达到百万数量级,训练速度往往会很慢。
1、只采集HR图像的数据集,如DIV2K,DIV8K等数据集,对于此类数据集可采用不同的退化方式获取相应的LR图像,从而构造匹配的LR-HR训练图像对,以这种方式获得的训练数据集一般被称为合成数据集。
选自Statsbot 作者:Vadim Smolyakov 机器之心编译 参与:Jane W 集成学习(Ensemble learning)通过组合几种模型来提高机器学习的效果。与单一模型相比,该方法可以提供更好的预测结果。正因为如此,集成方法在许多著名的机器学习比赛(如 Netflix、KDD 2009 和 Kaggle 比赛)中能够取得很好的名次。 集成方法是将几种机器学习技术组合成一个预测模型的元算法,以达到减小方差(bagging)、偏差(boosting)或改进预测(stacking)的效果。 集
领取专属 10元无门槛券
手把手带您无忧上云